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1.  General comments

	Stakeholder number

(To be completed by the Agency)
	General comment (if any)
	Outcome (if applicable)

(To be completed by the Agency)

	
	EFPIA welcomes the PBPK guideline and is keen to work with EMA to put appropriate practice in place. EFPIA expects that its constructive feedback indicates companies’ willingness to work with EMA on developing a practice that works well for all parties. As might be expected, interest in this important guideline was quite high since 14 EFPIA companies sent comments to the draft guideline. In addition to the comments on the text as detailed below, here are some important points to highlight first:

· Qualification definition: The guideline would benefit from a clearer separation of platform and “PBPK model for regulatory submissions” related topics. The two terms are sometimes loosely interchanged in the text. Although the definition of a platform is provided in the definition section, it would help if a short description is provided of a platform in the introduction part (Line 65 and further), together with a clarification of how a platform can be used to implement a model, i.e. how is a PBPK model different from a platform. See below a couple of points that need to be addressed in this respect (examples may help). Both platform and PBPK model need to be qualified for their purpose, but obviously the qualifications are very different, because a platform is more generic than a model, and a platform is often a piece of software. The part that defines the qualification (see e.g. L528-531) is not very clear for specific PBPK models developed for a regulatory submission. Additionally, libraries could be considered as a series of PBPK models for various compounds implemented by the vendor using their own platform.

· Accountability/responsibility for qualification: With regards to qualification, specifically for commercial PBPK tools, a clearer separation of the drug-dependent (from the sponsor) & drug independent (software provider) components would be helpful. This would allow separating the “role” of the sponsor from the role of the software provider, even if there is an increasing awareness of the PBPK software vendors (Simcyp, GastroPlus, PKSIM) regarding qualification, they need to be more closely involved in the PBPK platform qualification (i.e. population and compound library files).
· Version control of the PBPK platform: the need to re-perform all submitted PBPK modelling in the latest software versions is a real concern. It could become a major overhead and could thus limit the use of PBPK by sponsors or delay the simulations if there needs to re-qualify the model with the latest version. A sponsor that includes PBPK modelling in a submission should be able to use a platform that was approved by the agency for a series of purposes without the need to reconsider the qualification question of the platform for each new submission. The sponsor should rather focus on the specific PBPK model(s) developed for the submission package, including interactions of the drug candidate with relevant other drugs, and different physiologies (animal, children etc.), but unique for the submission. The purpose and validity of this modelling in the context of the submission should also be addressed by the sponsor.
· More clarity on other common uses of PBPK would be useful in the final guideline: in the draft guideline, the focus is mainly on “high impact regulatory analyses”, and in particular on DDI and paediatrics, which probably reflects the experience of the Agency. It is indeed possible to apply the principles laid out in the draft guideline to other areas of PBPK applications, but details vary for applications such as supporting human dose prediction, prediction of absorption and formulation effects, and prediction of the effect of organ impairment or genetic polymorphisms on PK. It would therefore be of great benefit if the final PBPK Guideline could reflect a broader use of PBPK M&S, e.g. biowaivers, extrapolation to special populations, food effect. The agency’s position on acceptability of applications of PBPK modelling and simulation for drug metabolizing enzyme induction (such as CYPs) would need clarification since there is currently no mention of this application in the guideline and this is now a widely used application of PBPK. Moreover, the use of a very limited number of examples may lead sponsors to be too cautious in the submission of applications of PBPK modelling. It is therefore suggested to list more scenarios such as applications for earlier development stages and applications such as predicting formulation, food or PPI-related DDI. Finally, it would be useful if the Agency could clarify its position on requirement of clinical intravenous (IV) dosing data for PBPK model building. The importance of IV dosing in aiding the understanding of drug disposition of orally administered drugs needs to be emphasized, especially for drugs that are transporter substrates, or possess poor solubility, CYP3A-mediated metabolism and phase II metabolism. Without iv studies, understanding of mechanisms underlying exposure can be compromised and the benefits of applying of sophisticated modelling can be lost.

· Provide information on medium and low impact applications and consequences associated with the software qualification:  the draft guideline provides detailed information for high-impact analyses, but very limited guidance on moderate and low level impact analyses. As experience with PBPK applications at different impact levels is gathered, the guideline should become more specific as to when these levels apply, and what consequences are associated regarding software qualification/model validation and reporting requirements.
· Examples of labelling claims: It would be most helpful to provide examples of labelling claims which have been impacted to greater or lesser extents by PBPK models and simulations therefrom.
· Useful references are proposed for consideration and addition to the final guideline: 
· The paper on good practices in modelling and simulation has been published by the EFPIA MID3 Workgroup in spring 2016 (Marshall et al, CPT Pharmacometrics Syst Pharmacol 2016; 5: 93–122; doi:10.1002/psp4.12049). Although covering a wider scope, PBPK examples are included. This paper addresses key aspects of practice, application and documentation, which are largely applicable to PBPK modelling as one application area. Insofar as they apply to the particular use of PBPK models as developed in the guidance, recommendations from this “good practices” publication should be taken into account. Link to the article: http

 HYPERLINK "http://onlinelibrary.wiley.com/doi/10.1002/psp4.12049/pdf" ://onlinelibrary.wiley.com/doi/10.1002/psp4.12049/pdf
· Reference to the PBPK white paper: Jones et al CPT 2015; 97: 247-262. Link to the article: http://onlinelibrary.wiley.com/doi/10.1002/cpt.37/full 

[image: image1.emf]Jones_et_al-2015-Cl inical_Pharmacology_&_Therapeutics.pdf


· It may be beneficial to leverage information from the “Guideline On Reporting The Results Of Population Pharmacokinetic Analyses” (EMEA 2007) for this current guidance on PBPK model building and reporting.  This will ensure consistency in the requirements of the reporting structure when carrying out a model-based analysis to support a licence application or other health authority submission.

· Since PBPK modelling and simulation is an example of extrapolation from prior data and information, please consider citing the EMA concept paper on “extrapolation of efficacy and safety in medicine development”, the draft reflection paper on “Extrapolation of Efficacy and Safety in Paediatric Medicine Development” and the ICHE11 guideline currently under revision. PBPK M&S is essentially an extrapolation exercise. The reflection paper, although focusing mainly on efficacy and safety, does state that “the underlying principles may be extended to other areas of medicine development” and many of these principles may indeed be applicable to PBPK.
· With respect to the application of PBPK modelling, other than cross-referencing guidances on the evaluation of the pharmacokinetics of medicinal products in patients with impaired renal (CHMP/EWP/225/02) or hepatic function (CPMP/EWP/2339/02), the agency should consider formulating some guidance regarding the application of PBPK to estimate PK changes of a drug in these populations.
	


2.  Specific comments on text

	Line number(s) of the relevant text

(e.g. Lines 20-23)
	Stakeholder number

(To be completed by the Agency)
	Comment and rationale; proposed changes

(If changes to the wording are suggested, they should be highlighted using 'track changes')
	Outcome

(To be completed by the Agency)

	Line 65
	
	Comment:

PBPK platforms are nicely explained in the definition section. Though, some clarifying words already in the introduction would be appreciated. A terminology table is proposed for consideration
	

	Line 82
	
	Comment: 
Update sentence with “…confidence in its utility increases” for increased clarity.

Proposed change: 
“However, it is expected that the extent of use of PBPK modelling will expand as additional system knowledge is gained and confidence in its utility increases”
	

	Lines 83-89 and Lines 133-138
	
	Comment: 
For commercial software, it is requested that it is the responsibility of the commercial software company to apply for a CHMP qualification for the PBPK platform intended purpose in general including software supplied compound files.
	

	Line 84
	
	Comment:

The formal process of CHMP qualification takes more than 6 month and Simcyp release its updated version each year.  How the qualification process should be appropriately aligned?
	

	Line 87
	
	Comment: 

Please clarify what is meant by learned societies.

See also related comment on line 144.
	

	Line 120
	
	Comment: 

Please consider using “drug-drug interaction” instead of “drug-interaction” for consistency.
	

	Lines 128-132
	
	Comment: 

This paragraph should be further clarified. For example how large should the dataset be relative to the model development dataset; does it need to be from separate studies
Proposed change: 

“To certify that a specific version of a PBPK platform can be used for an intended regulatory purpose, the ability of the platform to perform that specific type of simulation should always be explicit evaluated (i.e. the PBPK platform (including different versions) should be qualified for the intended purpose) using external data (i.e. data that are not used in model or platform building).    
	

	Lines 127-316


	
	Comment

This guideline is somewhat vague regarding the requirements for the PBPK software. Based on current trends, it is anticipated that DDI predictions will constitute a major portion of the PBPK modeling packages submitted in support of a regulatory file. 

It will be crucial to predict not only the geometric mean AUC, Cmax, AUC ratio and Cmax ratio, but also the confidence intervals associated with these parameters. This implies that the software would have to have some Monte Carlo capabilities to allow a simulation of the population variability. This may be obvious for commercial platforms such as Simcyp and PK-SIM, but not necessarily for in-house built software platforms.
	

	Lines 131, 171, 192, and Section 5.7
	
	Comment: 

Suggestion to state not only in line 171, but also in lines 131 and 192 that the safety of patients (co-) determines the impact. Or perhaps one could speak about “subjects”, since they will not all be “patients”, i.e. with a disease to be treated. The safety aspect could be mentioned again in Section 5.7. However, it is not entirely clear whether the focus is on the safety of study subjects (during drug development) and/or real-world subjects after market authorization.
	

	Line 133
	
	Comment: 

Remove “A” from “A qualification” to just “Qualification” for an action-statement.
It is suggested to include the URL to the relevant EMA web site:

http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000319.jsp&mid=WC0b01ac0580022bb0
And to also include “EMA/CHMP/SAWP/72894/2008/Rev 3” in Section 2.
Proposed change: 

A Qualification of a certain version of a PBPK platform for an intended purpose may occur via a CHMP 133 qualification procedure (EMA/CHMP/SAWP/72894/2008/Rev.3).
	 

	Lines 134-138


	
	“If there is a CHMP qualification opinion supporting the intended use of the platform (and version), then the qualification is presented on the European Medicines Agency’s (EMA) web site and a reference to this location in a regulatory submission is sufficient. In this case, the qualification can be referred in future applications with the same intended use, and no new submission of the qualification data is needed.”

Comment:

· It is not clear how the CHMP will qualify a certain version of a PBPK platform, and whether the criteria proposed in this guidance will apply when qualifying a version of a platform.  If a certain version of a platform gets the support from the CHMP, does it mean all the compound files, system parameters, etc are qualified or just certain parts of the platform?  These details are not in the CHMP qualification procedure and should be clarified. 

· It would also be an expectation that CHMP will provide adequate description and reasoning behind their opinions on any qualification plan they intend to put on their website so that sponsors and software vendors will clearly understand the reason behind any decisions.
	

	Lines 139-141
	
	Comment:

This is not to be preferred, because platforms are generic, and submissions are drug specific. A generic platform is supposed to handle multiple cases. 
Proposal: 
Handle platform qualification and assessment of PBPK models for regulatory submission separately. Alternatively, if the PBPK model is tailor-made and a generic platform was not used, the PBPK model could be assessed as any other model in a regulatory submission.
	

	Line 142
	
	Comment: 

If all work published in peer reviewed journals are considered qualified, as long as “the included validation dataset is described in sufficient detail to allow a secondary assessment”.   
· Could “dataset” be clarified?
· If the published work uses an earlier version of the platform, does it require a full re-qualification? Please clarify. We do not think that the re-qualification using new version is necessary. 

· Please clarify what "sufficient detail" means  Does this mean that " each parameter that is used in the validation must be listed or must be listed and justified"
	

	Line 142- 146
	
	Comment:

Qualification reports from commercial vendors should be considered acceptable as they may be up to date compared to literature reports or individual sponsor validation efforts. 

What should be included in the qualification report?
	

	Line 144
	
	Comment: 

Please clarify what "learned societies" mean. The process of the qualification made by learned societies needs also clarification.  
	

	Line 149
	
	This is further described in Section 6.

Comment:

There is no ‘Section 6’ in this guideline, shouldn’t it be Section 5.5”?
	

	Line 150-151
	
	Comment: 
With regard to the recommendation to seek scientific advice on the validity of an in-house computer programme, it would be helpful to know if this also applies to use of 3rd party commercial platforms. Also, it would be helpful to have more examples of what constitutes high, medium and low regulatory impact.
	

	Line 153, 200 and 228
	
	Comment: 

Further clarification would be appreciated on how pre-specification of the qualification process can be ensured. Should a company (PBPK software provider? Pharmaceutical company?) submit a qualification protocol to EMA before starting the qualification? Is there a process for this? Or is it sufficient to have traceable documentation that an outline of the qualification process has been archived before it has been carried out? How is this handled in the more general qualification procedure for drug development tools (EMA/CHMP/SAWP/72894/2008/Rev 3)?
	

	Line 153-159
	
	Comment: 

Would it be possible to give examples of established markers for hepatic (e.g. cytochrome P450) and renal clearance to aid in the qualification of the PBPK platforms?  Most software programs perform validation of these known drug markers automatically for each new version of the PBPK platform.
	

	Line 154-157
	
	Comment: 

Regarding the range of pharmacokinetically relevant properties, the concept of an “Applicability Domain” (Jaworska J et al ATLA 2005; 33: 445-59) could be cited. In this, the “physico-chemical, structural, or biological space, knowledge or information on which the training set of the model has been developed, and for which it is applicable to make predictions for new compounds” is described. Ideally, thereafter, predictions should be multidimensional interpolations between compounds within a specified range of physiological conditions. Predictions for a drug or physiological scenarios outside the applicability domain may require higher levels of experimental evidence to compensate for uncertainty due to extrapolation.
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	Line 154-157
	
	Comment: 

More clarity is needed. Is it meant that the victim drug model needs to be qualified (e.g. fraction metabolised fm) with a range of inhibitors (weak to strong)?

How accurate should the extraction ratio be determined? In how many species?
	

	Line 161
	
	Comment: 

Please provide how to define  "adequate precision" and  "a wide variety of drugs"
	

	Line 165
	
	Comment:

Please consider adding “same set of background in vitro and in vivo information” for the inhibitor drug to clearly differentiate form the model substrate drug.
	

	Line 163-166:
	
	Comment: 
“wide range of weak to strong CYP3A4 inhibitors...”

There needs to be more detail of what constitutes “ weak”, “moderate” and “strong” inhibitors and how many examples are needed to qualify the platform  

Also, more clarity is needed. Is it meant that the victim drug model needs to be qualified (e.g. fraction metabolised fm) with a range of inhibitors (weak to strong)?

Examples are very specific to DDI and this might discourage PBPK modelling in other area (absorption etc.)
	

	Lines 168-176
	
	Comment:

Impact is not so much determined by the generic platform, but more by the context of a specific compound and how PBPK modelling is used for that specific compound (DDI, paediatrics etc). So this would have to be addressed by the sponsor as part of the submission. The task of the platform vendor would be, in the case of drug libraries and interactions, that for specific cases (the library drugs and paradigm drugs) the platform can handle these cases.

Please add clarity on what process governs the determination of the level of qualification needed (high, moderate and low regulatory impact) and the size of the qualification dataset?

Would prediction on other population such as hepatic/renal impairment population or Chinese/Japanese population considered as high impact? 
	

	Line 178-179 and 191-192

(clarification)
	
	Comment:
The two statements should be consistent. See proposed rewording.
Proposed change: 
All simulations decisions that affect the SmPC (Summary of Products Characteristics) are considered to have a high-impact analysis. Whether simulations in these situations are of high impact also depends on the availability of further decisive or supportive data and on the therapeutic context. This High impact simulations could include […] 
As outlined above, whether these situations should be considered high impact also depends on the availability of supportive data and on the therapeutic ontext.
	

	Line 187-188

(clarification)
	
	Comment: 
Clarification of this point is needed; see proposed rewording.
Proposed change: 
prediction of changes of study design of drug interaction assuming other posologies compared to an available DDI study, such as using other doses/dose regimens
	

	Line 195
	
	Both examples are from the perspective of the platform vendor/developer. 
Proposal: 
It would be good to have one example in the context of a platform (for a vendor) and one for a sponsor developing a novel drug using a qualified platform in a hypothetical but realistic therapeutic context. 
	

	Lines 195-239
	
	Comment: 
Examples 1 and 2 relate to high regulatory impact analyses with the new drug as a victim or a perpetrator for “metabolising enzyme inhibition” effects, respectively.  It would be helpful to elaborate on additional examples in this guideline, such as:  “Requirements for PBPK platform validation to predict whether an investigational agent may act as a metabolising enzyme inducer in vivo”; “Requirements for PBPK platform validation for PBPK simulations of pharmacokinetics in special populations, leading to posology recommendations and relying on limited clinical exposure data.”

Proposed change (if any):  
Include additional examples on “Requirements for PBPK platform validation to predict whether an investigational agent may act as a metabolising enzyme inducer in vivo”; “Requirements for PBPK platform validation for PBPK simulations of pharmacokinetics in special populations, leading to posology recommendations and relying on limited clinical exposure data.”
	

	Line 202-203
	
	Comment: 

Time to steady-state is not a model parameter but an output or metric used to quantitate responses.
	

	Line 204-208
	
	Comment: 

Qualification dataset needs to be clarified.  How many drug substances are needed for a particular enzyme, considering various fm, fup, CL and Fg might be limited given the current substrate pool.
	

	Line 210-213
	
	Comment: 

The paragraph is confusing because the term "qualification" has two different meanings (see comments on general section). The first sentence is the qualification of inhibitor model itself, whereas the second sentence is the qualification of victim model by using pharmacogenetic data.

Proposed change:
Please consider separating these two sentences.
	

	Line 214 -220
	
	Comment:
Suggest considering the use of fm estimates from in vitro data for earlier stages of drug development and when the clinical mass balance data suggest low contribution from metabolism, even when a clinical study with strong inhibitor is not available
	

	Line 220
	
	Comment:

 It is not clear what "this specific input data scenario" is.
Does this mean we can qualify in vivo fm values based on mass-balance studies and in vitro metabolism studies, so that degree of DDI can be predicted?

Please provide example scenarios of where mass-balance data with in vitro data on metabolite formation can be used for model qualifications.
	 

	Lines 226-227
	
	Comment: 
If possible it may be helpful to include a standard list of inhibitors and sensitive probe substrates, recommended for PBPK platform validation purposes, for the different metabolising enzymes.
	

	Line 226-R231
	
	Comment: 

There is a need to differentiate between platform and PBPK model for regulatory submissions. If this concerns the platform: this would refer to DDI of library drugs with paradigm drugs (vendor responsibility). If this would concern a novel drug together with a set of possible perpetrators or victims, this would mean a limited number of “calibration” perpetrators or victims, possibly from a library, but always in combination with the investigational drug.
	

	Line 228 & 229
	
	Comment:  
“… and should include a large number of inhibitors of different potency”

What would constitute a “large number” in this case?  Could this be expressed in numbers to make clearer?

Similarly, “If the number of known in vivo inhibitors … is limited, …”

What would constitute a “limited number” in this case?  Could this be expressed in numbers to make clearer?
	

	Line 236
	
	Comment: 

The “Applicability Domain” (see above, comment on Line 154) could be cited in the statement for qualification validity
	

	Lines 240 – 243

(topic: low impact)
	
	Comment: 
Are there additional examples for moderate/low regulatory impact analyses (Section 4.2.2)? 

Proposed change: 
… design, e.g. selection of PK sampling time points.
	

	Line 241-3
	
	Comment:

The description of what constitutes a moderate or low level impact is very short. These categories are not clearly defined (other than by mentioning a single example for each).

Examples of low impact PBPK simulation could also include PK sampling schedules.

Could this section also suggest metrics for how PBPK simulations should report their findings? It could be clarified through examples as to whether full time course simulations are required, or predictions only for selected metrics such as AUC (0-t), AUC (ss,tau) and/or Cmax?
	

	L247-248
	
	Comment:

This concerns a high impact application. 
Proposed change: 
The high impact applications in paediatrics should be moved to section 4.2.1.
	

	Line 254
	
	Comment

Suggest adding the Guest et al. (2011) criteria for DDI predictions as acceptance criteria for PBPK model qualification, to avoid stringent bioequivalence criteria across large range of DDI magnitudes.

Link to the article: http://dmd.aspetjournals.org/content/dmd/39/2/170.full.pdf
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	Lines 258-278
	
	Comment:

Please clarify the process of submitting compound files, simulation files, and workspace files? Is the workspace file preferred in certain cases please clarify?

Also, Compound file may not be the right term, as a file is a format to collect and store information. 

Proposed change: 
Rather use a phrase like “Compound properties and supportive in vivo PK data”
	

	Line 267-269
	
	Comment: 

 “If the enzyme is expressed at multiple sites, accurate prediction of inhibition at each site should be demonstrated”. The in vivo data to differentiate inhibition at each site are often unavailable.  What are EMAs expectations regarding the experimental approaches, e.g. to differentiate CYP3A4 activities and inhibitions in gut and in liver? Can EMA clarify this requirement?   

Proposed change: 

If the enzyme is expressed at multiple sites, such as CYP3A4, accurate prediction of inhibition at each site should be demonstrated using PK parameters (e.g. Cmax, AUC)
	

	Line 271
	
	Comment: 

Please clarify whether the fraction metabolised (fm) of the substrate should be confirmed using human data?
	

	Line 275
	
	Comment: 

“When model file of commercial software is modified, it should be justified and demonstrate validity” does this mean that commercial values are always considered correct?
	

	Line 279-292 (Section 4.4)
	
	Comment: 

“Version” is specific to commercial software and how does it fit to programs (in-house models etc.) which do not have regular update?

We have concerns on the version control described in the current guidance. If the update dose not relate to the compound, the use of same old version should be acceptable in the submission.  In general, we feel that the previously published work for an intended PBPK application using an old version of software should be sufficient to serve as a justification of system dependent parameters.

Comment: 

If a model is deemed qualified for a particular version then the model should remain qualified for its intended purpose. 

If the guidance intends to exclude old and obsolete platforms from submission, EMA should communicate about “non-qualified versions” rather than restricting applicants to use the latest versions in the guidance.
	

	Line 282
	
	Comment: 

Please provide details (how /criteria) on "demonstrate a previously performed qualification is valid for the new version"
	

	Line 285
	
	Comment:

 It is suggested that if a commercial software is used by the company that supplies qualification of the platform including library compound files and populations in one version versus the next, there is no necessity to include this information in the report.
	

	Line 286-288

	
	Comment: 
It would be helpful to have more detail on what and how much evidence is needed to extrapolate predictive performance between previous and current versions of a PBPK platform.  Also, there needs to be more clarity how many versions a sponsor should keep.
	

	Line 290-292
	
	Comment: 

Documents submitted to health authorities will, very often, not contain simulations performed with the latest software version as the work is usually performed many months before submission. 
Proposed change: 

If the version of a platform used in a submitted report is not the most recent one, the Applicant should discuss whether the simulation would have been significantly different if the most recent version had been used. 
“Regulators may request simulations in a more recent version if significant simulation improvements are expected due to the updated features of the software”.
	

	Line 293-302
	
	Comment: 

It should be clarified whether the verification is intended only for in-house built platforms. Commercial platforms, such as Simcyp, have numerous published examples showing that the platform works as intended.

Also, since a vendor responsibility please consider clustering all platform-related sections, and clarify what is the role of vendor and sponsor.
	

	Line 294 – 301
	
	Comment:

Please remove the mathematical code of commercial models since it may not be available to sponsors as they are usually considered as an intellectual property to the owner.  
	

	Line 294-302
	
	Comment: 

For commercial software, details of the differential equations used and parameterizations should be provided by the software vendor and therefore not requested of the sponsor.
	

	Line 298-299
	
	Comment: 

Regarding numerical errors, it is not likely, perhaps impossible to have "no" numerical errors in a computational model. Numerical error is a specific term referring to the combined effects of truncation and round off errors. Truncation errors result from mathematical approximations (e.g. numerical differential equation solvers). Round off errors result from the finite limits of precision in a computation. Perhaps with regard to the differential equation numerical errors referred to in the cited WHO document, this should state that the differential equation integration algorithm(s) should function accurately against specified criteria for all the models to be reported.
	

	Lines 305-311
	
	Comment: 

For commercial software, the system-dependent parameters, including physiological parameters for the populations should be the responsibility of the software vendor and not the sponsor.  This can be referenced (e.g. from the literature) in a simulation report, but should not be a requirement to include all the data in an appendix.  If what is mentioned in Lines 83-89 and Lines 133-138, can be done by the software vendor, then this issue is addressed.
	

	Lines 305-306
	
	Comment:
 It would be helpful to clarify what is meant by ‘typical physiological parameters’ for a certain population?
	

	Lines 312-316


	
	Comment: 
“...when installed in the computing environment...”

With respect to the control of the installation process, there needs to be clarification if “computing environment” includes individual computer-loaded software or to a client-based server environment only.
	

	Line 312-316
	
	Comment: 

The need and shape of the installation control appears unclear. Can it not be assumed that the installation of a PBPK platform is covered by more general IT system standard operating procedures (SOP) of the company / user?
	

	Lines 313-316
	
	Comment:

A control of the installation of the PBPK platform is asked to be performed. Please provide details or example on what specifically agency would like to see in an installation control.
	

	Lines 315-316

(clarification)
	
	Comment: 
A low risk is expected for the proper installation of out-of-the-box software at the user’s site, and errors are easily detected. An “Installation qualification report” is suggested to document installation according to software provider specifications, while a CHMP qualification might certify a software provider that the specifications are appropriate.

Proposed change: 
… The key functionality of the program should be tested. The installation qualification report should include a presentation of how this was done. The installation processes should be included in a CHMP qualification procedure.
	

	Line 317-318

(topic: low impact)
	
	Comment: 
Section 5 describes extensive reporting requirements for high-impact submissions. Clarification should be added regarding reporting requirements for low- and medium-impact submissions.
	

	Line 320

(clarification)
	
	Comment: 
The paragraph abruptly jumps to PBPK in the context of a dossier. Propose to insert introductory wording below at the beginning of line 320.

Proposed change: 
PBPK reports should contain supporting information commensurate with the intended purpose and regulatory impact.
	

	Lines 329-331
	
	Comment:

A Quantitative Mass Balance diagram is asked to be included in PBPK report. Is this also needed for the drugs embedded in the commercial software that are part of the assessment or only for the investigational drug, need clarification? 
Proposed change: 
Please provide example in situation where certain aspect of ADME are not completely known. 
	

	Line 341-347
	
	Comment:

We are in agreement that at the time of NMA submission, the outcome of PBPK model building exercises should be put in context of the concentration-effect relationship and discussed in the light of dosing recommendations. However, we strongly disagree that this should be a requirement of the ‘PBPK report’ since it would be more appropriately placed in other submission documents where data from multiple sources (PBPK report, PK/PD report, study reports etc.) can be integrated and discussed in a cohesive fashion. The EMA guidance should only require details of the PBPK models and model building process to be included in the PBPK report. Other requirements for putting the model outcomes in context should be requirements for the package, but not the report. A related point is that PBPK models may be submitted to regulatory authorities at various times throughout the development process (e.g. clinical trial application stage, study protocols etc.). Therefore, the guidance should differentiate between guidance that is specifically referring to NMA submissions (i.e. putting exposure changes in context of concentration-effect relationship in order to justify dosing recommendations) from recommendations that would apply to submissions at any stage.

Proposed change (if any): 
Concentration – effect data should not be required to be integrated into the PBPK report. Modify to read as follows: “The report should also include sufficient background information to place the PBPK modelling in its context in the clinical development of the drug. If the PBPK modelling is used to predict scenarios where the exposure to the investigational drug may be altered, the background information should also contain a summary of the available knowledge about the exposure-response relationship for efficacy and safety and/or the exposure level at the therapeutic dose in the pivotal efficacy/safety trial population. If possible, a well justified target exposure (a range for relevant exposure parameters specifying what change in exposure would justify a posology adjustment) should be defined.”
	

	Lines
341-347,
461-464, 500-502
	
	Comment: 

Consequences of predicted changes in the exposure of the investigational drug with respect to efficacy and safety should not be an absolute requirement for discussion in PBPK simulation reports. The time when the PBPK modelling is carried out may be different from that of the final results of exposure-response (safety and efficacy) relationship analyses determined from clinical trials. It is therefore suggested that when there are disconnects in the timing of reports of PBPK simulations versus the availability of exposure-response information that the clinical consequences are discussed in summary documents such as CTD 2.7.2.
	

	Line 355
	
	Comment:

Suggest the level and format of information to include on assumption in paediatric investigation plan e.g. testable/evaluation as outlined in MID3 paper?
	

	Line 368
	
	Comment:

The ontogeny of enzymes for paediatric modelling could be justified by using a conservative approach supported by literature references.
Proposed change (if any):

Please specify or provide examples for ‘conservative approach’.
	

	Lines 375-376
	
	Comment: 

Process that includes construction, verification, evaluation and modification of the model

Not in accordance with figure 3

Proposed change (if any): 

The building of a PBPK model is a continuous process that includes construction, verification, modification, evaluation and modification qualification of the model prior to its application.
	

	Line 385
	
	Comment: 

The box labelled “Drug in vivo ADME and PK-data including mass-balance and intravenous data”, is unclear as to whether this is human or pre-clinical experimental animal data.  Typically, initial models prior to first-in-human are built using in vitro and pre-clinical animal data and refined after human data become available, then further refined after clinical drug-drug interaction results or human ADME study plus in vitro phenotyping results are available.  The interpretation of this box leads one to assume that mass balance and intravenous data is required for model building, which is inconsistent with the qualification of a victim investigational drug with either mass balance or clinical DDI data stated in lines 217-220.
	

	Line 387-402

(Section 5.5.2)
	
	Comment: 

The guidance should specify how applicants should evaluate the uncertainty and possible correlations referred here and requirements in the report. Whether they mean uncertainty in terms of SE and correlations in terms of VarCovar of if it could be covered by a sensitivity analysis.
	

	Line 391
	
	Comment: 

It is suggested to modify the sentence as follows. 
Proposed change: 
If there is more than one source of a certain parameter with notably different values, the value chosen should be justified and 391 the consequences discussed”
	

	Line 395
	
	Comment: 

Please clarify "otherwise justified" for logP.  If it is calculated, does this require the verification of the data base that was used for the calculation?
	

	Line 399-402
	
	Comment: 

Regarding correlation between and uncertainty in PBPK parameters more clarity on the issue is requested, perhaps through the use of an example.
	

	Line 401-402
	
	Comment:

A clear definition of the type of identifiability in the text: parameter identifiability or structural identifiability? Proposed to change to parameter identifiability across text to allow consistency
	

	Line 408
	
	Comment: 

Sensitivity analysis should be included in the model evaluation part.
	

	Line 409-432
	
	Comment: 

Is the definition of “sensitivity analyses” consistent across different EMA/ICH guidance’s (such as the Reflection Paper on extrapolation, or the emerging ICH guidance on Estimands)? Section 5.5.4 seems to imply that sensitivity analyses are repeat-analyses using different parameter values. However, one may also wish to test the sensitivity to assumptions in more general terms, such as structural model assumptions. (See also lines 361 and 436.)
	

	Line 413
	
	Comment: 

Please state simulation report instead of analysis plan.

Proposed change: 
“The approach for sensitivity analysis and the range of the parameter values tested in the sensitivity analysis should be described in the analysis plan simulation report.”
	

	Line 417-423
	
	Comment: 

The scientific rationale should be emphasized in term of selecting the parameters and ranges for sensitivity analysis. In our view, the parameters to be selected for PSA should be determined case by case; the range of PSA for the inputs (in vitro parameters) such as Ki, fu,p, should be depending on the quality of the data,  and PSA for physiological parameters should be based on scientific rationales and existing published data.
	

	Lines 443-444:  
	
	Comment:  
Evaluation of the drug model – it would be helpful to know if this requires a ‘bottom-up’ approach (i.e. a model derived mainly from in vitro and physical-chemistry/physiology data) or a middle-out approach (i.e. update a bottom-up model with emerging in vivo human data to understand gap in input data).
	

	Line 443
	
	Comment: 

How is defined “capable of predicting the observed data”? Please clarify.
	

	Line 445
	
	Comment: 

Suggest deleting “ADME” since the same may apply to any input data (not just ADME).

Proposed change: 

Otherwise it is necessary to refine and update the model with more ADME data.
	

	Line 449
	
	Comment: 

How the comparison with population PK analyses is expected? Please clarify
	

	Line 456
	
	Comment: 

Regarding “pharmacokinetic data”: is “data” the right term? Or “parameters”, or “metrics”, or “quantities”? This also links to the comment below re: lines 487 and 511-512.
	

	Lines 459-460:
	
	Comment: 
While outliers in the “observed dataset” may be flagged in a model validation report, the discussion if and why they are considered outliers is usually covered extensively in the “clinical study report”.  Cross-reference to this source document should suffice, rather than repeating the rationale.

Proposed change (if any): 
Please delete or adapt the wording.  
	

	Line 469
	
	Comment: 

The criteria of diagnostic and acceptance should be separated 

Comment: 
Could you give an idea of what the acceptance criteria should be (fold difference…) in case the therapeutic index is relatively large?
	

	Line 470-472

(topic: multiple enzyme sites)
	
	Comment: 
To be consistent with comment to line 268-274, deletion of the sentence is proposed.
Proposed change: 
If the affected enzyme is significantly present in several tissues, such as CYP3A 470 in the intestine and liver, adequate prediction of effects on the investigational drug needs to be shown 471 for inhibition at both locations with satisfactory prediction of Cmax and t1/2 as well as AUC.
	

	Line 472
	
	Comment: 
When is a simulation/prediction considered to be “satisfactory”? Please clarify. 
	

	Line 475-476

(clarification)
	
	Comment: 
meaning of sentence unclear; would the sentence “When assessing the results of the simulation in which the inhibitor used in the study may have affected other proteins (e.g. other CYP enzymes, transporters, etc.) involved in the disposition of the investigational drug, this should be considered.” reflect the intended meaning?
	

	Line 461-464
	
	Comment: 

As for the comment in lines 341-347, 461-464, 500-502, it is suggested that when there are disconnects in the timing of reports of PBPK simulations versus the availability of exposure-response information that the clinical consequences are discussed in summary documents such as CTD 2.7.2.. Therefore, the half-sentence in line 462 (e.g. the acceptance limits for a victim drug must be set in 462 perspective of the concentration-effect and concentration-safety relationships of the drug) should be deleted.

Proposed change: 

The acceptance criteria for the closeness of the comparison of simulated and observed data need to be considered separately for each situation e.g. the acceptance limits for a victim drug must be set in perspective of the concentration-effect and concentration-safety relationships of the drug. Biologically plausible reasons for any discrepancy in the prediction should also be considered.
	

	Line 487 and 511-512
	
	Comment: 

It should be born in mind that AUC, Cmax, Cmin, are not necessarily regarded as parameters by all modellers. For the pharmacokinetics community, AUC, Cmax and tmax are parameters. To the systems biology community, even terms such as clearance are a function of other more fundamental processes therefore also not necessarily parameters. If one were to be fundamentalist, even a physicochemical parameter such as an octanol-water partition coefficient is but a function of underlying molecular forces and may be predicted, for example, using quantitative structure-activity relationships (QSAR). It is recommended to define what are to be regarded as PBPK parameters, i.e. controlling inputs, as opposed to outputs that can be measured, i.e. metrics, within the context of this guidance and hence for submitted simulation reports.
	

	Line 489
	
	Comment: 

Is there no specific expectation regarding descriptive statistics?
	

	Line 493-495
	
	Comment: 

In the case that population files were qualified together with the system and not changed, there is no need to list the population parameters in the simulation report.
	

	Line 493-495
	
	Comment: 

Result section (5.6) implies that all model parameters should be provided in a tabular format, as well as in an executable format. 
It is not realistic to extract all the parameters defining population files from commercial software packages into a tabular format.
Please consider a tabular format only for key modifications from default population files when commercial software packages were used for PBPK simulations.
	

	Line 508

(editorial)
	
	Comment:

It is proposed to reword the sentence as this seems to be more appropriate.

Proposed change: 
…will be are used for the purpose of in this guideline
	

	Line 513-515

(editorial)
	
	Comment: 
More clarity is desirable hence, the proposed rewording
Proposed change: 
The structure, i.e. e.g. framework of compartments, of the PBPK model (including absorption model, perfusion- or permeability-rate limited organ distribution models, number of distribution compartments, connecting organ blood flows, etc.) and connecting organ blood flows.
	

	Line 532

(editorial)
	
	Proposed change:
Quantitative evaluation of how changes and (e.g. due to uncertainty or variability) in input parameters influence the model output.
	

	Line 537
	
	Comment: 

The true physiological process may never be known. The question is rather: “Does the model describe correctly what is known about the physiological process?”
	


Please add more rows if needed.
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QSAR Applicability Domain Estimation by Projection of the
Training Set in Descriptor Space: A Review
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Summary — As the use of Quantitative Structure Activity Relationship (QSAR) models for chemical man-
agement increases, the reliability of the predictions from such models is a matter of growing concern. The
OECD QSAR Validation Principles recommend that a model should be used within its applicability domain
(AD). The Setubal Workshop report provided conceptual guidance on defining a (Q)SAR AD, but it is diffi-
cult to use directly. The practical application of the AD concept requires an operational definition that per-
mits the design of an automatic (computerised), quantitative procedure to determine a model’s AD. An
attempt is made to address this need, and methods and criteria for estimating AD through training set
interpolation in descriptor space are reviewed. It is proposed that response space should be included in the
training set representation. Thus, training set chemicals are points in n-dimensional descriptor space and
m-dimensional model response space. Four major approaches for estimating interpolation regions in a mul-
tivariate space are reviewed and compared: range, distance, geometrical, and probability density distribu-

tion.
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Introduction

As the use of Quantitative Structure Activity
Relationship (QSAR) models for chemical manage-
ment increases, the reliability of the predictions
from such models is a matter of growing concern.
The OECD QSAR Validation Principles recommend
that a model should be used within its applicability
domain (AD; 1). The Setubal Workshop report (2)
provides conceptual guidance on defining a (Q)SAR
AD, but it is difficult to use directly. It states that:
The AD of a (Q)SAR is the physico-chemical, struc-
tural, or biological space, knowledge or information
on which the training set of the model has been
developed, and for which it is applicable to make
predictions for new compounds. The AD of a
(Q)SAR should be described in terms of the most rel-
evant parameters i.e. usually those that are descrip-
tors of the model. Ideally, the (Q)SAR should only be
used to make predictions within that domain by
interpolation not extrapolation. This definition
helps explain the intuitive meaning of the “AD”
concept, but its practical application requires an
operational definition allowing automatic (comput-
erised) design and quantitative procedure to deter-
mine a model’s AD. The lack of such guidance and
tools for assessing ADs are discussed in a paper by
Tunkel et al. (3).

Models yield reliable predictions when the mod-
els’ assumptions are met, and unreliable predic-

tions when these assumptions are violated. The
chemical space occupied by a training data set is the
basis for estimating where reliable predictions will
occur, because, in general, interpolation is more
reliable than extrapolation. A training set can be
analysed in the model descriptor space, where
chemicals are represented as points in a multivari-
ate space, or directly by structural similarity analy-
sis. The similarity approach to AD estimation relies
on the premise that QSAR predictions are reliable if
compounds are “similar” to the training set com-
pounds (4). However, chemical similarity is a sub-
jective term, and different concepts of similarity are
relevant to different endpoints (5-8). This paper
takes a statistical approach and examines AD
assessment by estimation of interpolation regions
in model descriptor space on the basis of the train-
ing data set.

Methods

There are four major approaches to defining inter-
polation regions in multivariate space: range, dis-
tance, geometrical, and probability density
distribution. Our choice of methods is not exhaus-
tive, but focuses on the approaches which are most
suitable as regression and classification models.
Interpolation is the process of estimating values at
arbitrary points between the points with known
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values. An interpolation region in one-dimensional
descriptor space is simply the interval between the
minimum and maximum values of the training data
set. A convex hull defines an interpolation region in
multivariate descriptor space. The convex hull of a
bounded subset of space is the smallest convex area
that contains the original set. Readers seeking fur-
ther details on the mathematical terms used in this
paper may consult http://en.wikipedia.org/wiki/
Main_Page.

Training sets in QSAR research

In practice, QSAR developers use retrospective
data, often from different sources. Therefore, the
selection of training data sets does not follow exper-
imental design patterns; this results in large empty
regions within the convex hull enclosing the data
set. This paper’s case study is an example of such a
situation (9, 10; Figure 1). There are also chemicals
outside the convex hull, but inside the ranges of the
training set. The meaning of this is, in general, that
different methods estimate the convex hull and
therefore the AD in different ways. In order to pro-
vide guidance on choosing a method, we pay partic-
ular attention to the assumptions for each of the
methods reviewed.

Figure 1: An eLUMO- logP 2D projection of
training data set chemicals (9)
and test set chemicals from
Glende et al. (10)
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® = training data set chemicals; O = test set chemicals.

Some authors consider the training set to consist
only of independent variables (11, 12). Considering
only the x-space part of the training set leaves out
the information about the prediction space (i.e. y-
space). Including both x-space and y-space allows
the model to incorporate all the information con-
tained in the training set, and prevents situations
where data points are interpolated in x-space but
are extrapolated in y-space. This can occur in linear
models with two or more descriptors, with non-lin-
ear models with one or more descriptors, and is
related to the amount of empty space included by a
particular interpolation approach while estimating
the AD. As the empty space a particular interpola-
tion approach covers, declines, so does the need to
include y-space in the assessment.

Thus, we propose to analyse the training set data in
n-dimensional descriptor space and m (most often m
= 1) dependent variables (property) space. In the case
study analysed in this paper, we assess x-space and y-
space separately. Because the usual dimensionality of
y is 1, we assess the domains of y-values with a range
method. A chemical will be in the domain if both con-
ditions are satisfied. It is also possible to combine x-
space and y-space and estimate joint interpolation
space, but this approach is more suitable to probabil-
ity distribution based methods.

Ranges

Descriptor ranges

The simplest method for approximating a convex hull
is taking ranges of the individual descriptors. These
ranges define an n-dimensional hyper-rectangle with
sides parallel to the coordinate axes. The data are
assumed to be distributed uniformly (13). The hyper-
rectangle neither detects interior empty space nor cor-
rects for correlations (linear or nonlinear) between
descriptors. This approach may enclose considerable
empty space, if the data are not uniformly distributed.

Principal components ranges

Principal Components Analysis (PCA) is a rotation of
the data set to correct for correlations between
descriptors. The principal components form a new
orthogonal coordinate system. The rotation yields
axes aligned with the directions of the greatest varia-
tions in the data set. The points between the mini-
mum value and the maximum value of each principal
component define an n-dimensional hyper-rectangle
with sides parallel to the principal components. This
hyper-rectangle AD includes empty space, but is
smaller than the hyper-rectangle in the original
descriptor ranges. This method has recently been
used to analyse the KOWWIN model AD (14).
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TOPKAT Optimal Prediction Space

The Optimum Prediction Space (OPS) from TOP-
KAT (11) uses a variation of PCA. As in typical
PCA, data are centred, but around the average of
each parameter range ([X,,Xminl/2) instead of
the standardised mean. The new orthogonal coor-
dinate system is thus obtained (named the OPS
coordinate system) by the same procedure —
extracting eigenvalues and eigenvectors from the
transformed data’s covariance matrix. The mini-
mum and maximum values of the data points on
each axis of the OPS coordinate system define the
OPS boundary. In addition, the Property Sensitive
object Similarity (PSS) between the training set
and a queried point assesses the confidence of the
prediction. PSS is the TOPKAT implementation of
a heuristic solution to reflect the data set’s dense
and sparse regions, and includes the response vari-
able (y). Readers may consult the TOPKAT patent
(11) for more details. A “similarity search” enables
users to check the performance of TOPKAT in pre-
dicting the effects of a chemical that is structurally
similar to the test structure. The user also has
access to references to the original information
sources.

Geometric methods

The direct method for estimating the coverage of an
n-dimensional set is the convex hull calculation.
Computing the convex hull is a computational
geometry problem (15). Efficient algorithms for
convex hull calculation are available for two and
three dimensions; however, the algorithms’ com-
plexity rapidly increases in higher dimensions (for n
points and d dimensions, the complexity is of order
O[nld21+1]), This approach does not consider data
distribution, but only analyses the set boundary. A
convex hull cannot identify potential interior empty
spaces.

Distance-based methods

Euclidean, Mahalanobis and City block distances

We review the three most useful distance methods
in QSAR research: Euclidean, Mahalanobis, and
City block distances. Distance-based approaches
calculate the distance from each point to a particu-
lar point in the data set. Distance to the mean, aver-
aged distance between the query point and all
points in the data set, and maximum distance
between the query point and data set points, are
examples of the many available options. Categor-
ising data points as close to/in the data set depends
on the threshold chosen by the user.

Euclidean and Mahalanobis distance methods
identify the interpolation regions by assuming that
the data are normally distributed (13, 16). City-block
distance assumes a triangular distribution.
Mahalanobis distance is unique, because it automat-
ically takes into account the correlation between
descriptor axes through a covariance matrix. Other
approaches require the additional step of PC rotation
to correct for correlated axes. City block distance is
particularly useful for discrete descriptors. The
shape of the iso-distance contours (for example, the
regions at a constant distance) depends on the par-
ticular distance measure used (see Table 1) and on
the particular approach for measuring the distance
between a point and a data set.

Hotelling T? and leverage

Hotelling T2 test and leverage, also distance meth-
ods, have been recommended for assessing QSAR
ADs (17, 18). These measures are proportional to
each other and to the Mahalanobis distance. The
Hotelling T2 method is a multivariate Student’s ¢-
test and assumes a normal data distribution, as
does the leverage approach (19). In regression, the
term “leverage values” refers to the diagonal ele-
ments of the hat matrix H = (X(X’X)-1X’). A given
diagonal element (h[;]) represents the distance
between the X value for the ith observation and the
means of all X values. These values indicate
whether X values may be outliers (16, 20). Both
Hotelling T2 and leverage correct for colinear
descriptors through use of the covariance matrix.

Hotelling T2 and leverage measure the distance
of an observation from the centre of a set of X obser-
vations. A tolerance volume is derived for Hotelling
T2 (18). For leverage, a value of 3 is commonly used
as a cut-off value for accepting predictions, because
points that lie +/- 3 standard deviations from the
mean cover 99% of normally distributed data.

High leverage values do not always indicate out-
liers for the model, i.e. points that are outside the
model domain. If high leverage points fit the model
well (i.e. have small residuals), they are called
“good high leverage points” or good influence
points. Such points stabilise the model and make it
more precise. High leverage points, which do not fit
the model (i.e. have large residuals) are called “bad
high leverage points” or bad influence points. The
field of robust regression provides a number of
methods for overcoming the sensitivity of Hotelling
T2 and leverage to unusual observations, but that
is beyond the scope of this paper.

Probability density distribution methods

Another approach to estimating the interpolation
region is the use of probability density distribution
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Table 1: List of data distribution assumptions for distance approaches

Distance measure

Assumption on data distribution Shape of contour lines

Mahalanobis/Hotelling T?/leverage
Dy(x,p) = (x — w7 2-Yx - )
covariance matrix X

plx) =

Multivariate normal,
mean |1, covariance matrix X

Ellipses (hyper-ellipses), defined by
matrix X

1 i
(2n)N/2 |Z |1,/2 exp{ /2DM(x;,U)}

Euclidean

Multivariate normal,

Spheres (hyper-spheres)

mean |1, unit covariance matrix

Dyx,p) = (x - wWT (x -

plx) = Wexp{_z/ng(x,u)}

City block
d(xy) = X |x; -yl

Multivariate uniform

Rectangle with edges that must be
traversed to get from point a to b
within the grid, identical to getting
from corner a to b in a rectilinear
downtown area, hence the name
“city-block metric”

methods (21). Parametric and non-parametric
methods are the two major approaches. Parametric
methods use the probability density function p(x) of
standard distributions such as Gaussian and
Poisson distributions. Alternatively, non-paramet-
ric techniques permit the estimation of probability
density solely from data.

Non-parametric probability density estimation is
free of assumptions about the data distribution, and
is often referred to as a distribution-free method. It
is the only approach capable of identifying internal
empty regions within the convex hull. Furthermore,
if empty regions are close to the convex hull border,
non-parametric methods can generate concave
regions to reflect the actual distribution of the data.
In other words, this method captures the actual
data distribution. Finally, there is no need to spec-
ify a reference point in the data set. Instead, a prob-
ability of belonging to the set is calculated for each
data point. Because of these attractive features,
which are lacking in other estimation methods,
probability density estimation is explained in more
detail in Appendix 1.

Relationships between different
interpolation approaches

Probability density and all distance-based methods
yield proportional results if the data are normally
distributed (Table 1), and the particular distance
method uses the data mean as a point of reference.
For all other distributions, the distance values are
not proportional to probability density, nor do they
identify the presence of dense and empty regions.

There is no general rule on which methods will
yield the most different results; it all depends on
the specific data distribution. For comparison,
Figure 2 displays AD regions estimated by
Euclidean, Mahalanobis and City block distances,
and probability density distribution based on the
case study data set (9).

Table 2 summarises the reviewed methods for
assessing interpolation regions. In addition to tech-
nical aspects, we compare software availability for
each method. The complexity of these approaches
varies greatly. This may turn some users away from
the more complex but more flexible approaches.
However, increasing accessibility to sophisticated
numerical methods through software packages
allows even non-experts to apply computationally
difficult methods.

Different results versus different methods

Figure 2 shows that different interpolation
approaches yield different ADs. This may leave
readers wondering which method to choose in spe-
cific situations. The choice of the particular method
is straightforward: the data distribution must meet
the assumptions of the method. If the training set
data are uniformly distributed, the ranges approach
would be recommended. If not, data distribution
should be tested for normality; if normality is con-
firmed, AD can be estimated by one of the distance
approaches. If the normality test fails, AD assess-
ment based on other parametric distributions or a
non-parametric probability distribution should be
considered.
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Figure 2: Interpolation regions and respective highest density regions (HDR) of the training

set (9)
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Table 2: Characteristics of the reviewed interpolation methods

Mahalanobis Probability
distance/ density via
Euclidean Hotelling non-parametric
Criterion Ranges OPS distance T2/leverage Geometric kernel estimation
Assumption Uniform Uniform  Normal, equal Normal, arbitrary Arbitrary None, reflects
regarding data variances variances distributions  actual distribution
distribution of any data set
Assumption Uncorrelated, Arbitrary  Uncorrelated  Arbitrary descriptors, Uncorrelated, PC rotation is
regarding model PC rotation can (uses PC  descriptors potential correlations additional step necessary as a pre-
descriptors be added as a rotation) are accounted for of PC rotation treatment of the
pretreatment directly in the can be added  data step
step formula
Ability to discover No No No No No Yes
internal dense
and sparse regions
of the interpolated
space
Ability to quantify No Yes Yes Yes No Yes
distance from the
centre of the set
Ease of Easy Easy Easy Easy, however Difficult above Used to be difficult
application of the involves inversion of 3D above 3D,
method in many the covariance matrix a recent very fast
dimensions (could be slow for method in Matlab
many dimensions) works in many
dimensions
Availability of Statistical TOPKAT  Statistical Statistical software ~ Computational Matlab,
tools i.e. software software for software for for general use, may geometry Mathematica
using the method general use general use require some packages; most HDR calculation
programming mathematical requires
packages programming

OPS = optimum prediction space, PC = principal components, HDR = highest density region.

Although it is straightforward, the requirements
for the data distribution in a training set are becom-
ing quite complex. First, the data must conform to
the assumptions of a particular model fitting tech-
nique. Second, the data must also meet the assump-
tions of the domain estimation method. As an
example, we use the linear regression model as a
modelling technique and estimate the AD by lever-
age.

When fitting data to a linear regression model
with Ordinary Least Squares, one first needs to
determine whether the following conditions hold: 1)
the residuals are normally distributed; 2) the error
distribution has a mean of zero; 3) the variance of
the random error is constant for all values of x; and
4) the errors associated with any two observations
are independent. That is, the error associated with

one value of y has no effect on the errors associated
with other values. Assumptions 1 and 2 can be
checked by residual analysis. Verifying assumption
3 requires information about the experimental data
measurement error. Different experimental tests
may have different variances; researchers must be
alert for this when combining data from different
tests. While assumption 4 is usually satisfied in
QSAR research, very few papers report whether
assumptions 1-3 are satisfied, suggesting that this
step may be frequently overlooked.

Next, modellers need to choose a method for AD
estimation that is suitable for the data distribution.
Let us consider the leverage method. This is an
appealing approach, because the hat matrix needed
to identify high leverage points (here identified as
out of the domain) is automatically calculated dur-
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ing regression model development. However, this
method is only suitable when the data are normally
distributed. Note that in the model development
phase, developers check error distribution not data
distribution.

In the past, verifying whether a particular train-
ing set was appropriate for a particular modelling
technique was rare in QSAR research. Instead, tra-
dition and convenience determined the choices.
Now, in order to develop ADs effectively, we need to
re-examine existing training sets. It should not be
surprising that complexity of the training set distri-
bution will be matched by the complexity of the
appropriate AD estimation method.

The AD estimation process may expose some defi-
ciencies in existing models. For example, if the
model uses collinear descriptors, it should be rede-
veloped, so the descriptors are orthogonal instead of
correcting for the collinearity during AD estimation
(14). Running PCA rotation only during AD estima-
tion may make it difficult to interpret predictions,
as the AD will be projected in a space different from
the original model descriptor space. One possible
solution is to start developing modelling approaches
that will allow for simultaneous model development
and AD estimation. Simultaneous development will
avoid imposing double, often different, require-
ments for the data distribution related to model
development and to AD estimation.

Case Study: AD of the Salmonella
Mutagenicity of Aromatic Amines
QSAR Model

The model

Debnath et al. (9) published a mutagenicity model
for n = 88 aromatic and heteroaromatic amines:
log TA98 = 1.08 log P + 1.28eHOMO - 0.73eLUMO
+ 1.46 IL + 7.20 (1), where log P is the n-
octanol/water partition coefficient, eHOMO and
eLUMO are energy on the highest occupied and
lowest unoccupied molecular orbitals, respectively,
and IL is an indicator variable with a value of 1 for
compounds containing three or more fused rings
and 0 for all other species.

Glende et al. (10) studied 18 alkyl-substituted
(ortho to the amino function) derivatives not
included in the original data of Debnath et al. (9).
Most of these new chemicals had descriptor values
in the range of the original chemicals. However,
with growing steric hindrance of the alkyl groups,
the difference between the predicted and experi-
mental values increased. Glende et al. concluded
that the QSAR equation is not appropriate for eval-
uating the mutagenicity of aromatic amines substi-
tuted with such alkyl groups. The set of Glende et
al. was used as the test set in the case study.

The methods for AD estimation

We assessed the AD of the model of Debnath et al.
(9) by using the following approaches:

1. Ranges in descriptor space and in PC rotated
space;

2. Euclidean distance in descriptor space and in PC
rotated space;

3. City-block distance in descriptor space and in PC
rotated space;

4. Hotelling T2;
5. Probability density distribution; and
6. Range of the response variable.

We developed criteria appropriate to each method
for in the domain and out of the domain. For the
ranges method, a chemical is out of domain if at
least one descriptor is out of range or a combination
of descriptors are out of range (this is equivalent to
the endpoint value being out of range). For
Hotelling T2 and distance methods, the cut-off
threshold was the largest distance among the train-
ing set points to the centre of the training data set.
For probabilistic density, the cut-off thresholds
were the 95th and 99th percentiles of the training
set’s probability density.

The training set data distribution failed the
Kolmogorov—Smirov uniform distribution tests and
Jarque—Bera normality tests implemented in MAT-
LAB 6.5 R13 at p = 0.05. This suggests that only
non-parametric probability distribution estimation
methods are suitable for the model (9).
Nevertheless, for comparison purposes, we carried
out AD estimation with all five methods.

Figures 3-5 illustrate the correspondence
between domain assessment and prediction error
for the approaches evaluated. There is a trend indi-
cating that the average prediction error for chemi-
cals in the domain is smaller than that for
chemicals out of the domain for all the methods. In
that sense, the results are similar to the findings of
Tong et al. (12). This observation is trivial, but it is
interesting to see the quantitative difference in the
quality prediction in and out of the domain (Table
3).

Table 3 summarises the results of the AD estima-
tion approaches evaluated. The numbers of chemi-
cals in and out of the domain, their identification
numbers, and the root mean square errors (RMSEs)
for chemicals in and out of the domain are included.
The RMSE is a sum of squared prediction errors,
divided by the number of points. By using the
RMSE, we do not question the goodness of fit of
analysed QSAR model analysed, but rather use it as
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Table 3: Summary statistics for different approaches to application domain assessment

PC Validation (in) Validation (out)
rotation
Domain defined by: + scaling No. RMSE No. compounds No. RMSE No. compounds
Ranges 15 1.9557 All but 9, 10, 18 3 3.608 9, 10, 18
Euclidean distance 15 1.9557 All but 9, 10, 18 3 3.608 9, 10, 18
City block distance 17 2.0708 All but 18 1 4.85 18
Hotelling T2 17 2.0708 All but 18 1 4.85 18
Probability density 95% 8 1.26 1,2,3,6,7,11,12,16 10 2.9 4,5,8,9,10, 13, 14, 15,
17, 18,
Probability density 99% 12 1.7 1,2,3,4,5,6,7,8,11, 9 3.2 9, 10, 14, 15, 17, 18,
12, 13, 16
Ranges Yes 17 2.0708 All but 18 1 4.85 18
Euclidean distance Yes 15 1.9557 All but 9, 10, 18 3 3.608 9, 10, 18
City block distance Yes 13 1.9403 All but9, 14, 15,17,18 5 3.0816 9, 14, 15,17, 18
Probability density 95%  Yes 8 1.26 1,2,3,6,7,11,12,16 15 25061 4,5,8,9, 10,13, 14, 15,
17,18
Probability density 99%  yes 9 1.7 1,2,3,5,6,7,11,12, 9 2.8 4,8,9, 10, 13, 14, 15, 17,

16

18

The numbering of compounds is as in Glende (8).

PC = principal components, RMSE = root mean square error.

a relative measure of prediction accuracy in the
domain and out of the domain. The RMSE of out of
domain validation points exceeds the RMSE of all
validation points for all approaches. As expected,
the RMSE for the chemicals in the domain esti-
mated by probability density approach is the lowest
among the methods considered; this confirms that
this method is the most accurate and appropriate.
In this case study, ranges of the response variable
were always in the domain and did not influence the
results.

Discussion

We reviewed AD estimation methods by determin-
ing interpolation regions defined by the training
data set in model descriptor space. By focusing on
the training set, we did not discuss a particular
QSAR modelling approach. However, we would like
to stress that our discussion is more suited to the

low-dimension regression and classification models
prevalent in modelling safety endpoints (22). The
discussion is less appropriate to the partial least
squares approach, which has its own set of diagnos-
tic tools, such as distances to the model in x and y
space, DMODX and DMODY, respectively (18).
However, similarly to the situation with regard to
the partial least squares approach, DMODY, we
emphasise the need to include y-space in the AD
estimation, particularly for approximating training
set coverage.

The results of AD estimation on the basis of
training set coverage in descriptor space reveal a
general trend — interpolative predictive accuracy,
i.e. concordance between observed and predicted
values, was, on average, greater than extrapola-
tive predictive accuracy. That, however, is only
true on average — many compounds with small
errors are outside the training set coverage, as
there are also compounds with large errors inside
the domain.
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Figure 3: Correspondence between the prediction error and the application domain
boundary obtained by principal components rotated ranges
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Correspondence between the prediction error and the application domain

boundary obtained by the non-parametric probability density method
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deemed as out of the domain.

Different interpolation approaches yield different
ADs. By emphasising the need to meet each inter-
polation method’s assumptions, we demonstrate
that analysing the training data set distribution
provides clear guidance on choosing a particular
method (as the methods are mutually exclusive).
However, in practice, it is not always possible to
choose the correct method by considering only data
distribution. The dimensionality of the model needs
to be considered as well, because the number of
data points in the training set may be insufficient
for the application of a particular approach (14).
High model dimensionality increases numerical
complexity, especially for geometric and non-para-
metric probability density approaches (21).

In addition, researchers need to reconcile the
methods used for model development (fit) and the
methods used for estimating the AD. Treating these
two steps separately often imposes different
requirements for the data distribution in the train-
ing set, making it difficult to meet all the assump-
tions. Joint fit and estimation of AD by probability
density methods is a promising approach. This area
requires more attention and further work.

By identifying the training data set coverage in
descriptor space, we make only a partial step
toward defining a model’s AD. There is always a
possibility that the model lacks a descriptor needed
to correctly predict the activity of a chemical. Thus,
despite the fact that the chemical appears to be in

the descriptor domain, its activity will most likely
be predicted with error, because it is structurally
different from the training set. There is also
another possibility — that the model extrapolates
correctly outside the domain.

Therefore, to describe the domain more
robustly, the full training set comprising both
structures and descriptor set is required. The full
training set permits an assessment of its chemical
space coverage. In this paper, we have not dis-
cussed the need for a global structural similarity
test to ensure that the structural features in a new
test compound are covered in the original training
set of chemicals (a quantitative measure of unique-
ness relative to the training set; Dave Stanton,
personal communication). The global similarity
test should be sufficiently robust to cover general
chemistry. Then, the AD estimation would consist
of two steps: 1) training set coverage in terms of a
descriptor values assessment; and 2) structural
similarity identification. We recommend using dif-
ferent methodologies to examine the training set
in different ways, in order to maximise the chances
of finding a potential difference. These ideas were
recently discussed at an ECVAM Workshop on the
AD (23), and our review was used as the back-
ground paper for the workshop. The methods
described in this paper are implemented in the
software AMBIT, developed by us and available
free from http://ambit.acad.bg/.
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Lastly, we would like to stress that if a chemical
is inside the domain according to a given, correctly
applied method, this is not a final argument for
accepting the prediction; rather, it is an indication
of the correct application of a model and the
reduced uncertainty of a prediction. This uncer-
tainty can be expressed as the RMSE, confidence
intervals (16) or other methods. Similarly, if a
chemical is outside the domain according to a given,
correctly applied method, this is not a final argu-
ment for rejecting the prediction; rather, it is an
indication of the increased uncertainty of the pre-
diction. We can say that this is, in a statistical
sense, an incorrect application of a model, but it is
nevertheless possible that the model will generate a
correct result.
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Appendix 1

Probability density estimation

Density estimation is an area of extensive research.
Due to computational challenges, most methods
focus on low dimensional (1-, 2-, 3-) densities,
unless additional assumptions are made (24). The
recently developed Algorithm for Multivariate
Kernel Density Estimation (24-26) achieves several
orders of magnitude speed improvement by using
computational geometry to organise the data. This
method directly estimates true multivariate den-
sity, and is very accurate.

The kernel density estimation method

In the kernel probability density estimation of m-
dimensional descriptor space, m-dimensional ker-
nels are placed on every data point and then are
summed up. With many data points and a high-
dimensional descriptor space, this procedure
requires considerable time and computer mem-
ory, consuming calculation. Estimating the joint
probability as a product of marginal (one-dimen-
sional) probabilities compromises the quality of
the estimate, if descriptors are statistically
dependent (27).

D ppeXy,) = k]ri[lp(xk) (2)

Lack of dependence is a much stronger requirement
than lack of linear correlation. It means lack of both
linear and any nonlinear correlation between the
descriptors. Descriptor independence is rare in real
data sets. While it is difficult to account for every
possible nonlinear correlation, linear correlation is
easy to handle via PCA.

There are four important steps in probability
density estimation:

1. Standardising the data (scale and centre);

2. Extracting the principal components of the data
set;

3. Skewness correction transformation along each
principal component; and

4. Estimating the one-dimensional density on each
transformed principal component.

Figure 6 illustrates three projections of probability
density with increasing accuracy. The density
obtained as the product of 1-D densities in the orig-
inal descriptor space is shown in Figure 6a. The
estimated density does not reflect the actual data

density, because the parameters are dependent.
Figure 6b displays the density obtained as a sum of
Gaussian kernels in PC space. Figure 6¢ shows the
improved quality of the estimated density obtained
by employing data set transformations such as
standardising the data and correcting for skewness.
Figure 6 illustrates that there is a need to be very
transparent about data processing during density
estimation, as different results can be obtained.

Mathematical details of highest density region
calculation

The next step after probability density estimation is
to find the highest density regions (HDR) which
comprise a predefined fraction of the total probabil-
ity mass. The (1 - o) HDR region is the smallest
interval (in 1-D) or multidimensional region
(> 1-D), comprising (1 — o)*100 percents of the
probability mass, where (0 < o < 1) (Figure 7). The
user can choose different o levels for the AD bound-
ary.

A HDR region has two main properties: 1) the
density for every point inside the region is greater
than the density for every point outside the region;
and 2) for a given probability content, (1 — o), the
interval is of the shortest length. It is not a trivial
task to calculate the HDR, because it becomes com-
putationally intensive unless one assumes a
Gaussian or other parametric distribution (25).
HDRs provide a very easy and intuitive interpreta-
tion: a point x lies in the region where (1 — o) points
are situated or it has (1 — o) probability to belong to
a set. This method overcomes the need to define a
priori a cut-off value and reference point in a set, as
required in distance-based methods.

The biggest challenge in HDR location is estimat-
ing the integral:

Jp(x)dx =({I-o)

XA,
A={x:p(x)<d}

Applying an elementary integration algorithm in
the multidimensional and non-parametric case
results in a very high computational time. Nina
Nikolova developed a novel, generic, fast method for
HDR calculation for the non-parametric method.
The novel algorithm was inspired by the basic idea
of Monte Carlo integration — generate random
points, evaluate function values at each point, cal-
culate the sum of the values, and finally, multiply
the sum by the multidimensional volume. The basic
theorem of Monte Carlo integration (28, 29) esti-
mates the integral of a function f over the multidi-
mensional volume, where the angle brackets denote
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Figure 6: 2D kernel probability density
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While the basic idea is simple, the algorithms for
Monte Carlo integration of general functions are
quite complex. However, we have the rather specific
case of a probability density function, and it is pos-
sible to develop a simple, yet effective, algorithm.
The algorithm consists of:

1. Setting the o value. (For example, if we are
interested in regions covered by 90% of all data
points, set o = 0.1);
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Figure 7: Probability density p(x) and 60%
high density region
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Structures of the Glende et al. (2001) test set2

2. Evaluating p(x;) for each point x;;
3. Sorting the points by descending p(x;) value; and

4. Counting the first M points belonging to the
(1 — o) fraction of all the points.

The smallest p(x) of this (1 — o) set is the threshold
value d = D(1 - o). For a query point y, p(y) is cal-
culated. If p(y) > D (1 — o), then the point is within
the dense region comprising (1 — o) of all the prob-
ability mass.

The density value, d = D(1 - o), is sufficient to
assess whether a query point y will fall within the
(1 — o) HDR. That is, we can determine whether a
new compound is inside or outside the descriptor
space covered by a given data set. The thresholds
D(1 - o) for different o can be stored and used for
further evaluations of query points. The knowledge
of the density value is also sufficient for HDR visu-
alisation (27, 30).

Structure R No. Compound Abbreviation
R H 1 2-Aminonaphtalene 2-AN
NH, Et 2 1-Ethyl 2-aminonaphtalene 1-Et-2AN
iPr 3 1-iPropyl 2-aminonaphtalene  1-iPr-2AN
nBu 4 1-nButyl 2-aminonaphtalene 1-nBu-2AN
tBu 5 1-tBu 2-aminonaphtalene 1-tBu-2AN
R H 6 2-Aminofluorene 2-AF
NH, Et 7 1-Ethyl 2- aminofluorene 1-Et-2 AF
iPr 8 1-iPropyl 2- aminofluorene 1-iPr-2 AF
nBu 9 1-nButyl 2- aminofluorene 1-nBu-2 AF
tBu 10  1-tBu 2- aminofluorene 1-tBu-2 AF
R H 11  4-Aminobiphenyl 4-ABP
Et 12 3-Ethyl-4-aminobiphenyl 3-Et-4 ABP
O NH iPr 13  3-iPropyl-4-aminobiphenyl 3-iPr-4 ABP
2 nBu 14  1-nButyl 2- aminobiphenyl 3-nBu-4 ABP
tBu 15  1-tBu 2- aminobiphenyl 3-tBu-4 ABP
R
Me 16  3,5-Dimethyl-4-aminobiphenyl 3.5-diMe-4ABP
NH, Et 17  3,5-Diethyl-4-aminobiphenyl  3.5-diEt-4-ABP
R iPr 18  3,5-DiPropyl-4-aminobiphenyl 3.5-diiPr-4-ABP

aThe names of chemicals are not the IUPAC standard names,

but have been retained as given in original paper (8).
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ABSTRACT:

Current assessment of drug-drug interaction (DDI) prediction suc-
cess is based on whether predictions fall within a two-fold range of
the observed data. This strategy results in a potential bias toward
successful prediction at lower interaction levels [ratio of the area
under the concentration-time profile (AUC) in the presence of in-
hibitor/inducer compared with control is <2]. This scenario can
bias any assessment of different DDI prediction algorithms if da-
tabases contain large proportion of interactions in this lower
range. Therefore, the current study proposes an alternative
method to assess prediction success with a variable prediction
margin dependent on the particular AUC ratio. The method is
applicable for assessment of both induction and inhibition-related
algorithms. The inclusion of variability into this predictive measure
is also considered using midazolam as a case study. Comparison

of the traditional two-fold and the new predictive method was
performed on a subset of midazolam DDIs collated from previous
databases; in each case, DDIs were predicted using the dynamic
model in Simcyp simulator. A 21% reduction in prediction accuracy
was evident using the new predictive measure, in particular at the
level of no/weak interaction (AUC ratio <2). However, inclusion of
variability increased the prediction success at these levels by two-
fold. The trend of lower prediction accuracy at higher potency of
DDIs reported in previous studies is no longer apparent when
predictions are assessed via the new predictive measure. Thus, the
study proposes a more logical method for the assessment of
prediction success and its application for induction and inhibition
DDis.

Introduction

The current consensus for the in vitro-in vivo extrapolation of either
clearance or drug-drug interactions (DDI) accepts prediction within a
two-fold (or occasionally three-fold) range from the observed data as
successful (Galetin et al., 2005, 2006; Brown et al., 2006; Einolf,
2007; Teitelbaum et al., 2010; Wang, 2010). The commonly used
metric to assess DDI is the ratio of the area under the plasma
concentration-time curve (AUC) after multiple dosing of inhibitor or
inducer in comparison to the control state (Rostami-Hodjegan and
Tucker, 2004; Obach et al., 2006; Houston and Galetin, 2008; Fahmi
et al., 2009). The assessment of different DDI algorithms involves
retrospective prediction of in vivo studies, and conclusions are often
made after the separation of the predictions according to the in vivo
DDI potency, analogous to the approach proposed by the United
States Food and Drug Administration guidelines for the classification
of inhibitor potency (Bjornsson et al., 2003; Huang et al., 2007).

This study considers the importance of the two-fold criterion in the
assessment of DDI prediction success. Although a two-fold range may
be appropriate for absolute values, the application of this method to
the prediction of a “ratio” has not been fully considered. Implications

The work was funded by a consortium of pharmaceutical companies (Glaxo-
SmithKline, Lilly, Novartis, Pfizer and Servier) within the Centre for Applied Phar-
macokinetic Research at the University of Manchester. E.J.G. was financially
supported by a Simcyp studentship.

Article, publication date, and citation information can be found at
http://dmd.aspetjournals.org.

doi:10.1124/dmd.110.036103.

and importance of these considerations for DDI prediction success are
discussed. This wide two-fold range at AUC ratios approaching 1 can
lead to false impression of high prediction accuracy and therefore a
potential bias in prediction trends. For example, for an actual AUC
ratio of 1 (classified as no interaction), the traditional two-fold mea-
sure accepts predicted ratios ranging from 0.5 (induction) to 2.0
(border of weak/moderate inhibition interaction) as successful. Many
publications assessing DDI prediction accuracy have been based on
databases containing almost half of the studies with AUC ratios <2
[e.g., 42% (Einolf, 2007) and 46% (Fahmi et al., 2009)], and the
conclusions drawn may have been skewed by this proportion. This
trend was evident in the analysis performed by Obach et al. (2006),
where the inclusion of DDIs with <2-fold increase in AUC resulted
in apparent increased accuracy and precision of DDI prediction.

In addition, application of two-fold range at AUC ratio around 1
can lead to misclassification of DDI potential. Table 1 shows pre-
dicted AUC ratios for a range of midazolam DDIs (in all cases, the
observed AUC ratio was <2), which were obtained using the dynamic
DDI prediction model in Simcyp simulator (Simcyp Ltd., Sheffield,
UK), as reported by Einolf (2007) and Fahmi et al. (2009). All DDIs
were reported to be successfully predicted when assessed via the
traditional two-fold measure. However, correct classification of the
observed interaction (i.e., induction, no interaction, or weak inhibi-
tion) was successfully predicted for less than 50% of the studies,
often as a result of underprediction of weak DDIs and subsequent
classification as no interaction. The induction interaction with
fluoxetine (AUC ratio, 0.84) was predicted as weak inhibition

ABBREVIATIONS: DDI, drug-drug interaction; AUC, area under the concentration-time curve; CV, coefficient of variation; K;, inhibition constant;

fu,, fraction unbound in plasma.
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MEASURE OF SUCCESS FOR PREDICTION OF DRUG-DRUG INTERACTIONS

TABLE 1

Accuracy in classification of midazolam DDIs (AUC ratio <2) based on
predictions obtained using the dynamic model

All studies were reported as successfully predicted when assessed via the traditional two-
fold measure approach.

Actual AUC P .
Kaiomabbi  Coe, laton o rediced
assification
Atomoxetine 1.0 NI J
Atorvastatin 1.4 w X (NI)
Chlorzoxazone 1.7 W X (NI)
Cimetidine 14 w X (NI)
Cimetidine 1.4 w X (NI)
Cimetidine 1.5 w X (NI)
Fluconazole 1.9 W v
Flumazenil 0.97 1 X (NI)
Fluvoxamine 1.7 w X (NI)
Gatifloxacin 1.1 NI J
Parecoxib 1.1 NI X (D)
Ranitidine 1.2 NI v
Ranitidine 1.3 W X (NI)
Ranitidine 1.7 w X (NI)
Azithromycin 13 w v
Carbamazepine 0.04 I v
Rifampin 0.05 1 v
Nitrendipine 0.93 I X (NI)
Simvastatin 1.1 NI v
Terbinafine 0.76 1 X (NI)
Valdecoxib 1.1 NI J/
Fluoxetine 0.84 1 X (W)
Fluvoxamine 1.39 W X (NI)

I, NI, and W represent induction, no interaction, and weak inhibition interactions, respec-
tively; / represents the correct classification predicted; and X represents incorrect prediction,
with the incorrect classification in parenthesis.

(AUC ratio, 1.28) and concluded as successful, despite this perti-
nent difference in classification.

Prediction of DDIs associated with highly variable drugs represents
an additional concern. These victim drugs [e.g., chlorpromazine and
cyclosporine (Shah et al., 1996)] have a high within-subject variability
in either C,,, and/or AUC (CV >30%) (Davit et al., 2008; Tothfalusi
et al., 2009), and a change in observed AUC in a DDI study could
therefore be a result of either DDI or variability. The difference
between the two is indistinguishable, emphasizing again that the
prediction within traditional two-fold limits may be inadequate for
this scenario. Therefore, this study proposes a new measure of pre-
diction accuracy applicable for both induction and inhibition DDIs. In
addition, this improved approach allows incorporation of the variabil-
ity in pharmacokinetics of the victim drug when required.

Materials and Methods

The traditional two-fold predictive measure is bounded two-fold above and
below the observed value: any prediction within these boundaries is classed as
a successful prediction (see Fig. 1). Therefore, if the observed ratio,
AUC {inhibito/ AUConiron 18 1, the boundaries would be from 0.5 to 2.0. As
noted in the Introduction, this range is too wide for an interaction, which is in
fact not present. As a result, we propose new limits, as shown in eqgs. 1 to 3
below. The limits coalesce when the observed ratio is 1 and approach the
traditional two-fold limits as the ratio becomes larger (Fig. 1).

Upper limit: R, * Limit (1)

Lower limit: R, /Limit (2)
14+ 2[R — 1)
Limit =g 3

obs

where R, represents AUC, ;i hibiio/ AUCconwo) = 1, i.€., in the case of
inhibition DDIs. The new predictive measure is also applicable for induction
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DDIs (AUC  jhauce/AUC oot < 1) if the reciprocal of the observed AUC
ratio, AUC o/ AUC is used.

To allow for uncertainty in the observed ratio, the impact of variability was
assessed by considering DDIs involving midazolam; a commonly used
CYP3A4 victim drug (Bjornsson et al., 2003; Galetin et al., 2005). In this case,
upper and lower limits are as defined in eqs. 1 and 2, respectively, but the
variability is now introduced into the limit as shown in eq. 4.

+inducer>

o 3+ 2(Rg— 1)

Limit = - — 4)
where 6 is a parameter that accounts for variability. If § = 1, there is no
variability and limits revert to those defined by eq. 3. If 6 = 1.25 and R, =
1, then the limits on R are between 0.80 and 1.25, corresponding to the
conventional 20% limits used in bioequivalence testing (United States Food
and Drug Administration, 2003). Note that these limits are symmetrical on the
log scale. Assessment of the variability in the present study was based on
approximately 20% CV reported for midazolam AUC (Kharasch et al., 1999,
2007) after intravenous dosing.

To assess the new predictive measure, DDI predictions were collated from
three publications (Einolf, 2007; Fahmi et al., 2009; Guest et al., 2010)
focusing on the prediction of DDIs involving midazolam as the victim drug. In
all studies, predictions were obtained using the dynamic model in Simcyp
simulator (n = 89) and input parameters were as defined in the respective
papers. The use of different parameter inputs (for example, for K; and fu,)
resulted in different predictions, even though approximately half of the DDIs
overlapped among the three publications. Classification of the predicted DDI
and the conclusions drawn in each study were compared using the conven-
tional two-fold method and new measure of prediction accuracy. The impact of
inclusion of the variability into the predictive measure was also assessed.

Results and Discussion

Figure 1 shows the differences in the limits of successful prediction
for the traditional two-fold measure compared to the new predictive
approach implemented using eqs. 1 to 3; the corresponding observed
data cover a 10-fold induction and inhibition range. The largest
difference between methods is observed for AUC ratios ranging from
0.3 to 3, whereas the differences at 0.3 >AUC ratio >3 are minimal
(Fig. 1). This result is particularly important from a regulatory point
of view, because it represents the distinction between a positive and
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FiG. 1. Schematic graph displaying the limits of the different predictive measures;
the traditional two-fold predictive measure (dashed lines) and the proposed new
predictive measure (dotted lines). Observed AUC ratios include both induction and
inhibition DDIs.
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Fig. 2. A, limits of DDI prediction with dashed lines representing the new predictive measure with inclusion of intraindividual variability, calculated via eqgs. 1 and 2, with
the limits defined in eq. 4. B, prediction of DDIs involving midazolam as the victim drug, taken from three publications, where B is Einolf et al., 2007, 2 is Fahmi et al.,
2009, and O is Guest et al., 2010. The new predictive measure and inclusion of intraindividual variability are used. Two induction DDIs are not shown (AUC ratio 0.04
and 0.05); both were successfully predicted with all methods. The vertical lines represent the limits between potency classifications, where I, NI, W, M, and S represents
induction, no interaction, weak, moderate and strong inhibition interaction, respectively.

negative DDI (AUC ratio =2), and therefore the decision on future
follow-up clinical DDI trials will be based on the small scale studies
and/or prediction from in vitro data using DDI models or prediction
software such as Simcyp simulator (Hyland et al., 2008; Zhao et al.,
2010).

The new proposed analysis in Fig. 1 allows only a small deviation
for successful prediction of AUC ratios at the level of no interaction
(AUC ratio 1-1.25). However, this is the area where there may be
deviation in the victim drug AUC as a result of variability. Variability
reported for midazolam was incorporated as & (1.25) into eq. 4; the
limits obtained via this approach are shown in Fig. 2A. Maximal
impact of the variability is expected at the level of no interaction,
whereas at higher AUC ratios the impact of variability is minimal in
comparison to the increase in AUC ratio in the presence of an
inhibitor and the limit approaches two-fold.

Existing large DDI databases (Einolf, 2007; Fahmi et al., 2009;
Guest et al., 2010) were used to assess the impact of this new
predictive measure, focusing in particular on the analysis of the DDI
prediction success involving midazolam as the victim drug (Fig. 2B).
Table 2 displays the prediction accuracy resulting from the traditional
or the new predictive measure with or without inclusion of the
variability. Notable trends include the 21% reduction in the overall
predictive accuracy using the new predictive measure compared to the
traditional measure in all three studies; this result was apparent
particularly at the level of no or weak interactions (50-59% decrease
in accuracy). The inclusion of variability into the new predictive

measure resulted in a two-fold increase in prediction accuracy for
these particular studies. The overall difference for all studies was not
as pronounced (12%) due to the low proportion of no and weak
interactions considered in the subset (18 of 89).

The impact of the new predictive measure on conclusions previ-
ously made in the three publications was assessed. The overall con-
clusions on the performance of both static and dynamic models within
the three publications did not change. However, all studies reported
the trend of reduced prediction accuracy and higher bias at higher
potency/positive (AUC ratio =2) inhibition DDIs. However, reanal-
ysis with the new predictive measure shows a more consistent level of
prediction accuracy across the different DDI potencies, with no clear
relationship between DDI potency and prediction accuracy (Table 2).
The initial trend of higher accuracy at the lower AUC ratios was likely
to be due to the wide two-fold boundaries at this range based on the
traditional DDI prediction measure.

The 20% value used here for the inclusion of variability was taken
from the limits currently used in bioequivalence testing (United States
Food and Drug Administration, 2003). This value was in agreement
with the reported variability in midazolam AUC (Kharasch et al.,
1999, 2007). The CV used was based on intravenous dosing and
would therefore exclude aspects of variability that may result after
oral dosing—e.g., variability in intestinal first-pass (Galetin et al.,
2008) and differences in gastrointestinal tract physiology (e.g., gastric
emptying) with the added impact of fasted/fed states in subjects (Shah
et al., 1996). The use of 20% is proposed as a generic value when

TABLE 2
Prediction accuracy of 89 DDI studies involving midazolam as the victim drug, collated from three publications (Einolf, 2007; Fahmi et al., 2009; Guest et al., 2010)

Prediction accuracy is assessed by the following methods: the traditional two-fold measure, the new predictive measure, and the new predictive measure with the incorporation of limits to

allow for the variability of midazolam.

Predictive Measure (Number of Studies) Induction (7) No Interaction (6) Weak (12) Moderate (29) Strong (35) Total (89)
%
Traditional two-fold measure 86 100 92 83 80 84
New predictive measure 57 50 33 66 74 63
New predictive measure + variability 71 100 67 72 77 75
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extending the methodology to other drugs in the absence of specific
variability data.

Overall, this study critiques the traditional method used to assess
predictive accuracy for ratios applied for drug-drug interactions. The
proposed new methodology is appropriate for the assessment of ratios
and allows tighter prediction boundaries for low AUC ratios, appli-
cable across different interaction mechanisms (induction and inhibi-
tion). The importance of prediction accuracy and performance in the
region below two-fold change in AUC from a regulatory point of view
has been addressed. In addition, this refined approach allows inclusion
of variability into DDI predictions.
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Physiologically Based Pharmacokinetic Modeling
iIn Drug Discovery and Development: A
Pharmaceutical Industry Perspective

HM Jonesl, Y Chen?, C Gibson?, T Heimbach*, N Parrott®, SA Petersé,_] Snoeys7, \'A% Upretis,

M Zheng9 and SD Hall*®

The application of physiologically based pharmacokinetic (PBPK) modeling has developed rapidly within the
pharmaceutical industry and is becoming an integral part of drug discovery and development. In this study, we provide a
cross pharmaceutical industry position on “how PBPK modeling can be applied in industry” focusing on the strategies for
application of PBPK at different stages, an associated perspective on the confidence and challenges, as well as guidance
on interacting with regulatory agencies and internal best practices.

PERSPECTIVE

PBPK models can provide a quantitative mechanistic framework
for prediction of systemic and tissue exposures, and, when com-
bined with pharmacodynamic (PD) models, can be used to esti-
mate the time course of drug response for diverse dosing
regimens in different species, populations, or discase states.
Although the concept of PBPK modeling is not new, indeed
Teorell' introduced the idea of simulating pharmacokinetics
(PK) using multicompartmental models, incorporating biological
and physiological components in 1937, the application of PBPK
modeling within the pharmaceutical industry has been limited
until recent years.

A key reason why PBPK modeling is now more appealing is
the increasing availability of iz silico and in vitro systems, which
act as surrogates for iz vivo absorption, distribution, metabolism,
and excretion (ADME) processes and the advancement in the iz
vitro-in vivo correlation of these data. The growing use of PBPK
is reflected by an increase in publications on this topic over recent
years. A PubMed literature search (http://www.ncbinlm.nih.-
gov/pubmed) performed on October 20, 2014, on the phrase
“physiologically based pharmacokinetic model” retrieved 1,339
references since 1974, over half (55%) of which were published
in the last 10 years. In contrast, a similar search on the word
“pharmacokinetics” shows a more steady increase in publications
on this topic with only a third of the publications occurring in

the last 10 years. These findings indicate that the use of PBPK
modeling is diverse, with applications including but not limited
to simulation of preclinical, healthy volunteers, and special popu-
lation PK, absorption/formulation/food effect modeling and
drug-drug interaction (DDI) prediction. Given the diversity of
PBPK applications, the collaboration of scientists from a range of
disciplines, including preclinical scientists, formulation scientists,
pharmacometricians, clinical pharmacologists, clinicians, and sta-
tisticians, is key to successful implementation and application of
PBPK modeling and simulation in drug discovery and develop-
ment. A significant step forward for the pharmaceutical industry
is the inclusion of PBPK modeling in submissions to regulatory
agencies. Indeed, the US Food and Drug Administration
(FDA),2 the European Medicines Agency (EMA),3’4 and the
Ministry of Health Labor and Welfare (MHLW) of Japan® sug-
gest the use of PBPK modeling in their latest guidance docu-
ments on DDI assessment and hepatic impairment studies;
PBPK workshops have been organized by both the FDA and the
Medicines and Healthcare Products Regulatory Agency in the
United Kingdom.

Given this increasing interest in the application of PBPK mod-
eling, a group comprising industrial scientists with expertise in
PBPK modeling was assembled under the umbrella of the Inter-
national Consortium for Innovation and Quality in Drug Devel-

opment, Drug Metabolism, and Clinical Pharmacology

1pfizer Worldwide Research & Development, Cambridge, Massachusetts, USA; “Genentech, South San Francisco, California, USA; 3Merck Research
Laboratories, West Point, Pennsylvania, USA; “Novartis Institutes for Biomedical Research, East Hanover, New Jersey, USA; 5F. Hoffmann-La Roche Ltd, Basel,
Switzerland; ®Astrazeneca Research & Development, Molndal, Sweden; 7Janssen Research & Development, Beerse, Belgium; 8Amgen, Seattle, Washington,
USA; ®Bristol Myers Squibb Company, Pennington, New Jersey, USA; 10gj; Lily & Company, Indianapolis, Indiana, USA. Correspondence: HM Jones (hannah.
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Leadership Groups. The focus of this group has been to develop
a united view on PBPK best practice and application in the phar-
maceutical industry. Many review articles on PBPK modeling
have already been published, generally representing the view of
academic scientists® or of individual pharmaceutical compamies.7’8
This publication is the first position article on PBPK modeling
that represents a collective view of PBPK experts from 10 leading

global pharmaceutical companies.

PBPK MODEL STRUCTURE AND PARAMETERS
A PBPK model is a mathematical model that integrates drug data
and data on species physiology (system data) to simulate the PK
profile of a drug in plasma and tissues. In a basic PBPK model,
compartments are defined by a volume, blood flow rate, and tis-
sue composition that are specific to the species of interest (Sup-
plementary Figure S1 online). The assumptions underpinning
different tissue distribution and elimination models have been
described in detail.” The simplest PBPK models assume perfusion
rate limited distribution within the “well-stirred” model with
clearance occurring at the liver and kidney.&lof12 Generally, the
gut compartment (Supplementary Figure S1 online) is more
complex and is separated into the lumen (unabsorbed drug) and
enterocyte (absorbed drug), which exist in subcompartments cor-
responding to the different regions of the gastrointestinal tract.
For a given species, specific values for subtissue volume, surface
area, gastric emptying/intestinal transit times, and pH that vary
with feeding state are parameterized to describe the movement of
a drug through the gastrointestinal tract.'>715 Simple models
assume that absorption across the enterocytes and distribution to
different tissues is by passive diffusion only but active transport
processes can be incorporated if relevant drug and species-specific
parameters are available. PBPK models integrating both absorp-
tion and disposition processes have been described in the litera-
ture.'*2° These have either been integrated within commercial
PBPK platforms, including ADMEWORKS DDI Simulator
(htep://www.fqs.pl/chemistry_materials_life_science/products/
ddi_simulator), CLOEPK (http://www.cyprotex.com/insilico/),
GastroPlus (www.simulations-plus.com), PKSIM (www.systems-
biology.com/products/pk-sim.html), and Simcyp (www.simcyp.
com), or coded in commercial modeling software, such as R
(heep://www.r-project.org), MATLAB (The MathWorks),
NONMEM (Icon PLC), ADAPT (BMSR, University of South-
ern California), Berkeley Madonna (University of California
Berkeley), SAAM2 (The Epsilon Group), and Trial Simula-
tor/WinNonlin/Phoenix (Pharsight, Certara L.P.).
System-dependent parameters (e.g., tissue volume, blood flow)
for human and preclinical species are available in the litera-

21
ture

22 and have recently been compiled.23 Other important sys-
tem parameters include glomerular filtration rate, amount of
microsomal protein/hepatocytes per gram of liver, plasma pro-
tein, enzyme, and transporter abundances. Human population
PBPK models specify population-specific system parameters and
account for variability (standard deviation or range) and the
covariation between these parameters. Populations of interest
include healthy adults of different ethnicities, hepatic and renal

impaired patients, smokers, young or elderly subjects, obese
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individuals, pregnant mothers, and patients with cancer. 6

Essential compound-specific parameters required for model exe-
cution will vary with the ADME properties of a compound and
the question of interest and have been described in detail in the
literature” and in the case studies described below.

PBPK MODELING STRATEGIES AND APPROACHES IN
INDUSTRY

Traditional fitting of compartmental models to observations or
so-called “top-down” modeling allows identification of intrinsic
and extrinsic covariates that account for variability in drug expo-
sure and have been a key part of drug development. Contempo-
rary modeling and simulation activities embrace the power of
mechanistic PBPK models or “bottom-up” models in drug dis-
covery to influence the selection of molecules based upon their
characteristics, possibly even before the physical existence of a
new chemical entity (NCE).”’

“Bottom-up” PBPK modeling is typically conducted during the
early drug discovery stage; compound-specific parameters are
often estimated using i silico models®” and iz vitro data and used
to predict iz vivo PK in preclinical species and humans. For such
generic use, it is advisable to verify the translation of key model
inputs for a set of well understood reference compounds. Some
mismatches between predicted and observed values can be attrib-
uted to uncertainties in input data.?® However, large mismatches,
for example a significant underprediction in clearance, are more
likely to be indicative that the model is missing some important
PK processes, although uncertainty in measured values should
not be overlooked.

Such a mismatch in preclinical species might suggest uncer-
tainty in using PBPK modeling to predict human PK until all rel-
evant processes in animals are better understood. Thus, when
used for prediction of human PK, many users believe that confi-
dence is higher if PBPK models in animal species show a good
match to iz vivo studies.'® The importance of model verification
at this stage is illustrated by the retrospective analysis from
PhRMA? that showed poor predictions of human PK parame-
ters with PBPK approaches using iz vitro ADME inputs from a
range of pharmaceutical companies when no model verification
was used and the dataset was blinded. These poor prediction
results highlight the need for (1) model inputs from high quality
in vitro experiments, (2) knowledge of the compound of interest,
and (3) verification of the model assumptions preclinically before
simulation in humans. Although this compound-specific verifica-
tion of PBPK models in animals before prospective use for
humans is generally considered useful, caution is needed because
there may be qualitative differences between PK properties in
animals and humans that are misleading. For example, a meta-
bolic pathway could be missing or minimally represented in ani-
mals compared to humans and not well captured iz vitro.
Therefore, it is recommended, whenever possible, to compare in
vitro metabolite patterns from hepatocyte incubations in animals
and humans to give further insight into qualitative differences.

Predictive accuracy at this discovery stage varies between labo-
ratories and is highly dependent on the use of validated 77 vitro
assays.28’3o The physicochemical properties of the molecule
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Figure 1 Physiologically based pharmacokinetic (PBPK) modeling strategy for various applications in drug discovery and development. Early in drug dis-
covery, PBPK models are built by integrating in silico, in vitro, and animal pharmacokinetic (PK) data to guide molecular design toward optimized absorp-
tion, distribution, metabolism, and excretion (ADME) properties in humans and to project the PK profile for a first-in-human (FIH) dosing regimen. This is
an iterative process that builds confidence and identifies clinical candidates with a higher probability of development success. Once the molecule enters
clinical testing at FIH, several “learn and confirm” cycles integrate all accumulated knowledge to generate a verified model capable of predicting untested

clinical scenarios during both early and late stages of drug development.

will also play a role. Confidence is generally higher for Biophar-
maceutics Classification System class 1 and 2 molecules that are
also predominantly eliminated by cytochrome P450 (CYP) oxi-
dation and this is discussed in more detail in the section about
Challenges and Future Opportunities for the Application of
PBPK Models.'>?"

Once clinical data are available, the mechanistic PBPK models
can be further refined and applied prospectively to simulate cer-
tain intrinsic and extrinsic factors that affect PK/PD profiles. In
practice, a combination of these approaches (refinement and sim-
ulation) occurs as is illustrated in Figure 1 and described below.
Mismatches between simulation and observation may occur at
this stage and parameter sensitivity analysis is therefore essential
to identify the inputs that have the most influence on a simulated
profile. The selection of which parameters to focus upon for the
parameter sensitivity analysis requires a good understanding of
how input data are generated and the associated errors, as well as
an awareness of a reasonable range of input values.

As there is always uncertainty in iz vitro to in vivo extrapola-
tion, it might be appropriate to optimize the scaled values for
these sensitive parameters in the clinical PBPK model to obtain
better simulations. Parameters for which the true value can be
estimated from the data, that is identifiable parameters (often
intrinsic clearance [CLint], reversible inhibition constant [Ki],
etc.), are revealed through parameter sensitivity analysis and a
small number of parameters can then be estimated in the context
of fixed values for the remaining parameters. However, caution
should be applied in this process as, inevitably, there will be cases
in which multiple mechanisms or parameters can explain the dif-
ference between predicted and observed profile equally well. In
particular, fitting physiological parameters should be avoided
especially when the values of these parameters and their bounda-

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 97 NUMBER 3 | MARCH 2015

ries are already known. Generally, any sensitive parameters should
be further studied using lower throughput or customized assays
to gain more confidence in their refinement or optimization
against iz vivo data.

This parameter estimation process does not seem to limit the
prospective performance of the PBPK models but may be impor-
tant when reduced or minimal physiological models are used. For
example, for a first-in-human (FIH) study, hepatic clearance pre-
dicted by physiological scaling from 77 vitro incubations might be
found to underpredict iz vivo clearance. In the absence of evi-
dence of other routes of climination, hepatic clearance may be
optimized to better match the iz vivo data. To build confidence
in the model, this optimization would later need to be verified by
challenging the model against further studies leading to a clearer
understanding of metabolism. As the development of the clinical
candidate proceeds, the single and multiple ascending dose, mass
balance, DDI, absolute bioavailability, food effect, formulation
effect, and pharmacogenetic studies all provide opportunities to
evaluate and update the PBPK model (“middle-out” approach).
Eventually, a PBPK model that is consistent with all collected
data provides a repository of knowledge, which is powerful for
mechanism-based extrapolation and presents the opportunity to
predict unstudied scenarios with an extensively verified model
and, when appropriate, incorporate these predictions into regula-
tory submissions, product labels, additional post-approval studies,
and next generation follow-on drugs.33

The predictive performance of PBPK modeling should be eval-
uated over the course of model development and be revisited as
more clinical data becomes available. The criterion (e.g, fold of
deviation between predicted and observed) should be predefined
by considering various factors and be fit for purpose. For a drug
that has a wide safety window, the commonly used two-fold
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deviation boundary may be acceptable. For drugs with a narrow
safety window, more stringent measures (especially on the maxi-
mal plasma concentration [Cmax]) should be applied. When the
PBPK modeling is used for risk assessment, overprediction or
underprediction within two-fold may not change the category of
the anticipated risk. However, a more rigorous criterion may be
considered if the accuracy of the prediction could adversely affect
dose selection (i.e., a dose adjustment). It is important to note
that there can also be significant variation between clinical studies
and one study may not necessarily predict another within two-
fold. These topics have been reviewed recently in the literature.>*

In addition, PBPK software should be tested and verified to
ensure that it is programmed correctly, does not contain bugs,
and the parameters are specified appropriately. For commercially
supplied PBPK software, this step is the responsibility of the soft-
ware vendor. When custom developed models or software are
used, the verification and documentation must be performed in-
house and supplied to regulatory authorities when appropriate.
At the compound level, PBPK models require further levels of
verification. Assumptions concerning the ADME behavior of a
particular molecule should be physiologically sound and consist-
ent with 7z vivo data, and reliable extrapolation of iz vitro inputs
must be confirmed. Reliable extrapolation must be confirmed
and continually refined as more data become available. The type
and level of verification required will depend on the stage at
which the PBPK model is applied, the application, the ADME
properties of the compound, and the importance of dependent
decisions. In particular for simulating drug interactions, it may be
required to combine the PBPK model of an NCE with an exist-
ing victim/perpetrator compound model or special population
model in commercial software. However, before using these pre-
existing models, the end user should ensure that the externally
developed model is well verified by referring to documentation or
ideally peer-reviewed publications. In some cases, the science sur-
rounding a particular drug or special population is not mature
enough to construct a validated PBPK model or patient popula-
tion (Table 1). This is often the case when elimination is via
non-CYP pathways or interactions of transporters and enzymes.
Similarly, the lack of data and prospective evaluation of the
effects of disease states, such as hepatic and renal insufficiency,
leads us to conclude that PBPK of disease populations is not suf-
ficiently well understood to allow reliable models to be developed
at this point in time.

PBPK MODEL APPLICATIONS

PBPK models are routinely applied® from early discovery where
limited data exist for any given molecule, to late drug develop-
ment where a wealth of data is available (Figure 1). Applications
in the preclinical space include animal or human PK projections,
as well as efficacious dose projections, oral absorption, and DDI
modeling.6’35’36 Successful models can inform design and out-
comes of formulation, PK, toxicokinetic, or pharmacological
studies, thus supporting the three Rs (reduction, refinement, and
replacement of animal use in research). At this early stage, typical
questions that PBPK modeling could help with include: (a) Can
PBPK simulations be used in lieu of animal studies (e.g., to help
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in selecting the best early clinical formulations or to set technical
specifications)? (b) What is the expected PK profile in humans
and what confidence do we have with PBPK models to predict
oral exposures? (c) What is the most appropriate formulation
strategy? (d) Is a food effect in humans expected, is the food
effect dose or formulation dependent, and can the food effect be
mitigated? (e) Are clinically relevant DDIs or pharmacogenetic
effects expected in humans and how should clinical studies be
designed to understand these potential issues?

In early clinical development through post-approval, applica-
tions include PK prediction in subpopulations in addition to oral
absorption and DDI modeling with a focus on the clinical devel-
opment plan and on key studies that are going to influence pro-
ject strategy. Here, typical questions that PBPK modeling could
help with include: (a) What is the expected exposure and
exposure-response in patients or subpopulations (e.g., pediatrics,
ethnic groups)? (b) What is the therapeutic index? (c) What clin-
ical doses should be used to obtain efficacious exposures? (d) Can
PBPK modeling be used in lieu of DDI studies? (¢) Would a
modified release formulation offer a solution to improve the
safety or efficacy profile or marketability of a compound?

PBPK modeling in the pharmaceutical industry has been
reported to have influenced regulatory communications, internal
decision-making, and mechanistic understanding of clinical
observations.”” Typical PBPK modeling applications that are
used preclinically or clinically for internal decision-making and to
influence regulatory decisions are summarized at a high level in
Supplementary Table S1 online. Although PBPK modeling has
been used in a number of cases to address regulatory questions, it
is more frequently used for internal decision-making such as FIH
dose predictions, compound selection, food effect assessments, or
DDI predictions. Confidence and frequency of use vary from low
to high, depending on the complexity of the model with DDI
and absorption modeling used by all companies, whereas infre-
quent applications are reported for some subpopulations (e.g.,
pregnancy population; Table 1).

Three selected case examples demonstrate the diversity of
PBPK modeling applications in drug development and are
described in more detail below. Specifically, these three examples
have been selected to highlight (1) the utility of PBPK for specific
questions for which simpler approaches may not be valid; (2) the
use of “middle-out” approach by taking advantage of human PK
data to confirm the model; (3) the importance of good quality
experimental data and sound rationale for integrating the knowl-
edge; (4) the importance of qualifying compound and system
models of specific populations; and (5) the utility of PBPK mod-

eling to reduce the number of 77 vivo studies.

Example 1: Modified release formulation PBPK modeling

This example illustrates the use of a PBPK absorption model
(GastroPlus v. 8.5) in the non-human primate (NHP) and
human to help design a modified release (MR) formulation. The
aim was to reduce the peak-to-trough ratio relative to the imme-
diate release (IR) dosage form and thus provide improved clinical
tolerability. Compound X is a weakly basic, lipophilic molecule
with low aqueous solubility that is significantly enhanced in
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Table 1 Confidence, limitations, and challenges for different PBPK applications

Application

Level of confidence

Limitations and challenges

Preclinical and

clinical PK prediction

CYP cleared substrates

Moderate to high

No significant limitations or challenges for liver
metabolism from in vitro systems for BCS | and Il
drugs. Intestinal metabolism is more challenging.

Non-CYP metabolically cleared
substrates

Low to moderate

Hepatocytes predictive for glucuronidation and
some other non-P450 processes. Expression pat-
terns and scaling factors for many non-CYP enzymes
poorly defined.

Clearance/absorption by active Low Transporter abundances and activity scaling factors
transport poorly understood.
Elimination by combination of metab- Low Interplay of multiple transporters and metabolic
olism and transport enzymes very challenging.
Passive distribution/absorption High No significant limitations or challenges.
processes

DDI prediction Involving reversible CYP inhibition Moderate to high Accurate in vitro estimation of fraction metabolized

alone or CYP induction alone

by P450, especially when non-P450 enzyme
involved. The i.v. clearance and mass balance data
for victim (substrate) not readily available at early
stages of drug development. Uncertainty in CYP
phenotyping and measured in vitro inhibitor con-
stant (Ki).

Involving time-dependent CYP
inhibition

Low to moderate

In addition to caveats above, there is a general over-
prediction of in vivo DDI from in vitro data.

Involving combined reversible, time-
dependent inhibition, and induction
of CYPs

Low

Difficult to evaluate mechanisms when multiple
processes are involved because of limited clinical
data.

Involving modulation of non-CYP
pathways

Low to moderate

Lack of prospective evaluation.

Involving apical active transport Moderate Not all in vitro assays provide appropriate inhibition
constants.

Involving basolateral active transport Low As above. Predicting intracellular inhibitor concen-
trations from uptake and efflux transport activity is
challenging.

Absorption, food For high solubility, high permeability High No significant limitations or challenges for absorp-

effect, and formulation

prediction

compounds (B(DD)CS | drugs)

tion prediction in fasted or fed state.

For low solubility, high permeability
compounds (B(DD)CS Il drugs)

Low to moderate

Need to ensure that in vitro data and/or in vivo mod-
els for solubility, dissolution, and precipitation are
relevant for humans.

For high solubility, low permeability, Low Role of food on bile-micelle binding, P-gp and perme-
compounds (B(DD)CS Il drugs) ability can be unclear.
For low solubility, low permeability Low Complex interplay between multiple factors, includ-

compounds (B(DD)CS IV drugs)

ing solubility, permeability, and transporter interac-
tions. Difficult to verify model as multiple
mechanisms involved cannot be verified independ-
ent of each other.

Special population

PK prediction

Ethnic variations, smokers, preg-
nancy, obese, and elderly

Low to moderate

Knowledge of abundance of CYP, non-CYP enzymes
and transporters can be limited or lacking. Under-
standing of changes in gut physiology limited. Confi-
dence is enhanced as more human data become
available.

Pediatrics

Low to moderate

Non-CYP metabolism and transporter mediated dis-
position poorly defined. Ontogeny in very young not
well defined for enzymes or transporters. Only
sparse clinical data available for verification.
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Table 1 continued

Application

Level of confidence

Limitations and challenges

Renal insufficiency Low

Impact of renal impairment on CYP expression and
transporter activities unknown. Only sparse clinical
data available for validation.

Hepatic insufficiency Low

Impact of cirrhosis on enzymes and transporters not
fully defined. Only sparse clinical data available for
validation.

Pharmacogenetics

Moderate to high

Some limitations because of lack of clinical data for
infrequent genotypes.

Large molecule
PK prediction

Using reduced PBPK model

Moderate

No significant limitations or challenges for predict-
ing plasma or tissue PK for large molecules with lin-
ear PK. For large molecules with TMDD, the
predictability of plasma and tissue PK is much more
challenging.

Using full whole-body PBPK model Low

Drug disposition mechanisms not fully character-
ized (e.g., FcRn recycling).

PBPK-PD prediction
and target organ
distribution

For small passively permeable
molecules

High

No significant limitations or challenges.

For active transporter substrates Low

Partition coefficient for target tissue needed when
tissue concentrations are either permeability-limited
(as in biologics) or transporter-mediated (as in
brain, liver, kidney, etc.) is uncertain.

BCS, Biopharmaceutics Classification System; B(DD)CS, biopharmaceutics drug disposition classification system; CYP, cytochrome P450; DDI, drug-drug interaction;
PBPK, physiologically based pharmacokinetic; PD, pharmacodynamic; P-gp, P-glycoprotein; PK, pharmacokinetic; TMDD, target mediated drug disposition.

biorelevant media (Supplementary Table S2 online). The active
substance was formulated as IR hard gelatin capsules and, in
phase 1 clinical studies, neuropsychiatric side effects were corre-
lated with the Cmax that occurred one to two hours after dosing.
Administration with food improved tolerability compared to the
fasted state. As food also reduced Cmax and increased the time
to Cmax (Figure 2A), it was hypothesized that slower drug
release from an MR formulation would reduce the initial absorp-
tion rate, thus lowering Cmax and reducing the side effects.
However, to ensure efficacy with once daily dosing, it was also
necessary for the MR formulation to match the 24-hour trough
plasma concentrations seen with IR.

For an MR formulation to be successful, absorption from
the distal gastrointestinal tract must be sufficient to maintain
the extent of absorption. To address this question, a PBPK
human absorption model was utilized. It was known that for-
mulations exhibiting different zero-order release rates in vitro
could be achieved via an eroding matrix technology with
enteric coating to restrict release in the stomach. Simulation
was then used to explore plasma profiles produced by different
intestinal release rates and to choose two potential formula-
tions in which the complete dose was released over either 5 or
10 hours (Figure 2B). These simulations indicated that signifi-
cantly reduced Cmax might be achieved without a significant
reduction in total exposure. Even for the 10-hour release pro-
file, the area under the plasma concentration-time curve
(AUC) up to 24 hours with the MR formulation was only
reduced by about 12% compared to the IR formulation. The
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AUC (ng-hr/mL) over the 24-hour dosing intervals was pre-
dicted to be 36, 35, and 32 for the IR, S-hour MR, and 10-
hour MR, respectively, with corresponding peak-to-trough con-
centration ratios of 8.3, 2.7, and 2.0.

Furthermore, simulations suggested that a significant fraction
of the drug would be absorbed in the large intestine (30% for the
5-hour release and 60% for the 10-hour release). To give more
support to this hypothesis and to test the i vivo release charac-
teristics of the prototype MR formulations, a study was con-
ducted in NHPs. Data from this study (Figure 2C) showed that,
in spite of the shorter intestinal transit time in NHP, both the 5-
hour and 12-hour MR formulations achieved plasma levels in
reasonable agreement with simulations. Therefore, based upon
human simulations and the NHP data, it was decided to proceed
with two MR formulations into the clinic.

Clinical results for single 1 mg oral doses of 5-hour and 10-
hour MR formulations are shown in Figure 2D together with
the simulated profiles using drug release profiles described by
Weibull functions with 85% of the dose released in either S or
10 hours. In this example, the application of clinical and preclini-
cal PBPK modeling combined with model verification using a
limited preclinical iz vivo formulation screen was used to define
an efficient strategy for clinical formulation development. The
clinical absorption model was subsequently used to assist in the
development of a biorelevant dissolution test and this test was
then applied to build a level A in vitro to in vivo correlation,
which should be able to serve as a surrogate for iz wvivo

performance.38
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Figure 2 Compound X physiologically based pharmacokinetic (PBPK) model building, verification, and simulation. (A) Observed (mean = SD;

n=06; ® fasted; and []fed)and simulated plasma concentration-time profiles in fasted (solid line) and fed (dashed line) healthy volunteers. (B) Simu-
lated human plasma concentration-time profiles for immediate release (IR; dashed line) and controlled release (CR; 5-hour CR solid line; 10-hour CR dot-
ted line) conditions. (C) Observed (mean * SD; n = 3; M 5-hour CR; and [J 10-hour CR) vs. predicted plasma concentration-time profiles under different
CR conditions (5-hour CR dotted line; 10-hour CR solid line) in non-human primate (NHP). (D) Observed (mean = SD; n=9; @ 5-hour CR; and O 10-hour)
vs. predicted plasma concentration-time profiles under different CR conditions (5-hour CR solid line; 10-hour CR dotted line) in healthy fasted volunteers.

Example 2: Prediction of DDI potential for a candidate drug
with nonlinear disposition

This example illustrates the use of PBPK modeling to assist in
the design of a clinical DDI study for a candidate compound
with pronounced nonlinear PK. Compound Y is a lipophilic
amine with a pKa of 8.2 (Supplementary Table S3 online). As
published by Hallifax and Houston®” and Berezhkovskiy,* the
unbound concentration of compounds with this physicochemis-
try is higher in the tissue cytosol than in plasma, mainly due to
lower intracellular pH compared with plasma pH, which effects
the clearance predictions of extensively ionized compounds.
Therefore CLint of compound Y was not determined in a tissue
subcellular fraction but in human kidney and lung slices and
human hepatocytes. Hepatic uptake experiments®  performed
using the oil-spin method, showed that at clinically relevant con-
centrations the unbound intracellular concentration of com-
pound Y is expected to be 3.4-fold higher than the unbound
plasma concentration. To test whether CYPs and non-CYPs
contributed to the overall hepatic metabolism, studies using
human hepatocytes with and without the broad CYP inhibitor
aminobenzotriazole (1 mM) were conducted over a concentra-
tion range. The contribution of non-CYP enzymes in metabolic
clearance was negligible at low compound Y concentrations but
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was significant at higher concentrations. The hepatic CYP com-
ponent was further characterized by enzyme kinetic experiments
using recombinant CYP1A2, CYP2D6, CYP3A4, and
CYP2C19 models. After correction for hepatic CYP abundance
and application of inter system extrapolation factors CYP1A2
was clearly the most important hepatic enzyme involved in the
metabolism with an unbound iz vitro affinity constant (Km) of
1.2 UM (Supplementary Table S3 online). This was confirmed
in human hepatocytes that showed more than 90% inhibition of
the metabolic clearance in the presence of the CYP1A2 inhibitor
fluvoxamine at a compound Y concentration of 0.05 uM. In
view of the work of Hallifax and Houston® that demonstrated
that lipophilic amine can compete for cellular uptake, human
hepatocytes were used to account for the possibility that fluvox-
amine would affect the hepatic uptake of compound Y. Time-
dependent CYP1A2 inactivation kinetics (KI, kinact) due to
compound Y were determined using human liver microsomes.
All these iz vitro data, together with physicochemical data and
preclinical absorption and distribution data (Supplementary
Table S3 online) were integrated in a PBPK model using Simcyp
ADME Simulator v. 9.3 (Simcyp Ltd., UK).

Compound Y showed pronounced supra-proportional PK in a
single ascending dose study in humans with a six-fold increase in
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Figure 3 Compound Y physiologically based pharmacokinetic (PBPK) model building and verification. Simulated (green line) hepatic intrinsic clearance
of compound Y for an oral single dose of (A) 50 mg and (B) 400 mg. Simulated (green line) vs. observed (red line) plasma concentration-time profiles of

compound Y for an oral single dose of (C) 50 mg and (D) 400 mg.

dose normalized AUC between the 5 mg and the 400 mg dose.
The “bottom-up” PBPK model could simulate the observed PK
within two-fold for the different cohorts (5-400 mg). However,
for the lowest doses, a trend toward overprediction of the
observed exposure was noted, whereas for the highest doses, a
trend toward underprediction of the observed exposure was
noted. Using a “middle-out” approach, Bayesian parameter esti-
mation was subsequently used to optimize the CYP1A2 Km and
maximal velocity (Vmax) based on the clinical dataset. Using this
approach, the observed nonlinear PK data was best described
with a three-fold higher CYP1A2 Km and three-fold higher
CYP1A2 Vmax than experimentally determined. Hepatic CLint
as a function of time and plasma PK simulations at 50 mg and
400 mg are shown in Figure 3A-D. PBPK simulations suggest
that at a 50 mg dose, saturation of hepatic extraction only occurs
during first pass and at a 400 mg dose, extensive saturation of
hepatic extraction occurs up to 60 hours after dosing, explaining
the zero-order plasma kinetics profile at this dose level. The
accumulation of compound Y over time due to CYPI1A2
mechanism-based inactivation and CYP1A2 enzyme saturation
was also accurately simulated (Figure 4A).

These simulations suggested that the extent of DDI with
CYP1A2 inhibitors or inducers would be highly dependent on
the dose and dosing regimen of compound Y. A PBPK model file
for fluvoxamine was internally developed and verified using avail-
able clinical studies. Various DDI scenarios with fluvoxamine
were simulated and were used to design the most appropriate
clinical DDI trial. Development of an internal fluvoxamine com-
pound file in Simcyp was needed because the available fluvox-
amine inhibitor file in Simcyp v. 9.3 was not able to accurately

reproduce observed DDIs with CYP1A2, CYP2Cl19, and
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CYP3A4 metabolized drugs. The simulations indicated that,
although at low doses of compound Y, a pronounced DDI is
expected, at a therapeutically relevant dose, the fluvoxamine DDI
would be manageable. The DDI simulations convinced the devel-
opment team to design a fluvoxamine DDI study with two differ-
ent dose strengths of compound Y. Figures 4B and 5C show the
simulated DDI with fluvoxamine resulting in a 5.7-fold and 1.7-
fold Cmax increase and a 17-fold and 4.8-fold AUC increase for
the high and low compound Y dose, respectively. The observed
fluvoxamine DDI results showed a 5.0-fold and 2.1-fold Cmax
increase and a 21-fold and 5.1-fold AUC increase for the high
and low compound Y dose, respectively, confirming the PBPK
DDI simulations. Figure 4D shows the simulated DDI with flu-
voxamine with multiple dosing of compound Y at 75 mg b.id.
(2.1-fold Cmax increase and 2.8-fold AUC increase). PBPK
modeling had a significant impact on the drug development of
compound Y by allowing the team to mechanistically understand
the nonlinear PK as a function of dose and time, and, more
importantly, by enabling the optimal design of the clinical DDI
study at different compound Y dose levels. A standard clinical
DDI study design (low dose compound Y, 100 mg q.d. fluvox-
amine) would have resulted in early discontinuation of the pro-
ject because of unmanageable DDI potential. In addition, the
modeling was able to capture the interindividual variability in PK
in healthy volunteers (including outliers) and special populations
(results not shown). Furthermore, the PBPK model was able to
accurately predict the PK and DDI at low and high doses of com-
pound Y and was able to show that, in a real life scenario when
compound Y is at steady state after dosing with a pharmacologi-
cal active dose, fluvoxamine results in a 2.1-fold and 2.8-fold
interaction on Cmax and AUC, respectively, despite the
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Figure 4 Compound Y simulations of a physiologically based pharmacokinetic (PBPK) model in the absence and presence of fluvoxamine. (a) Simu-
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Figure 5 Montelukast physiologically based pharmacokinetic (PBPK) model building and verification in adults. Observed (filled circles) vs. predicted
(solid line) median plasma concentration-time curves for montelukast in adults. (A) Seven mg i.v. dose; (B) 50 mg oral solution; (C) 10 mg film-coated tab-
let in fasted state; (D) 10 mg film-coated tablet in fed state (5/95th percentile of simulated profile = dashed line).
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observation that at a low single dose of compound Y an interac-
tion of S-fold and 21-fold was observed for Cmax and AUC,

respectively.

Example 3: Translation of adult pharmacokinetic properties to
pediatric populations

To better understand the ability to perform adult to pediatric PK
translation, a retrospective PBPK model (Simcyp, v. 13.1) was
buile for the CYP substrate montelukast (Singulair). A reduced
PBPK model was parameterized using basic physicochemical and
preclinical data listed in Supplementary Table S4 online and
was qualified using adult iv. and oral PK data. The value of
human volume of distribution at steady-state of 0.125 L/kg was
taken from clinical studies that used iv. dosing. The quantitative
contribution of specific CYPs to the metabolic clearance of mon-
telukast was based on CLint data derived 7% vitro from recombi-
nant CYP systems using a relative activity factor approach.
Montelukast is a substrate for CYP2C8, CYP2C9, and CYP3A4
in humans and these enzymes are believed to account for 72%,
12%, and 16% of the metabolic intrinsic clearance, respectively.41
The metabolic clearance estimated by subtraction of the renal
clearance from total systemic clearance in adults was 2.22 L/hr
and was used in the well-stirred liver model to estimate the total
hepatic iz vivo CLint. The total hepatic CLint was then allocated
to the different enzymes using the recombinant CYP i vitro
data described above. Parameterizing the elimination in this man-
ner enabled the use of enzyme-specific ontogeny functions for
the translation of adult drug clearance to different pediatric pop-
ulations. The relatively minor renal clearance of 0.4 L/hr
observed was also added to the model which, together with the
metabolic clearance, predicted a total clearance of 2.6 L/hr. A full
PBPK absorption model was used because PK data were available
following administration of montelukast in different age-
appropriate formulations (oral solution, film-coated tablets,
chewable tablets, and oral granules) and in fed and fasted state
for film-coated tablets. Experimentally, determined particle size,
dispersion type of the different formulations, and fasted simu-
lated intestinal fluid/simulated gastric fluid solubilities were all
included in the model.

The model was built and qualified using the adult PK data.
Drug/system data was then used to simulate the PKs of different
pediatric populations. The PBPK model provided a plausible and
useful description of the concentration-time profile of montelu-
kast in both adults and children of different age ranges. The
observed and model simulated concentration vs. time profile in
adults after either iv. (7 mg) or oral (50 mg) administration as a
solution, and after administration of a film-coated tablet (10 mg)
in both fed and fasted states is shown in Figure 5. The AUC,
Cmax, terminal half-life, and distribution at steady-state were all
predicted to within two-fold of the observed values in all four
dosing situations in adults providing some confidence and verifi-
cation of the PBPK approach. Simulations were then conducted
using the model for pediatric age groups ranging from 1 month
old to 13 years old in the fed state following cither film-coated
tablet or oral granule administration (Figure 6). Overall, the
PBPK model performed reasonably well at describing the
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observed concentration-time data in the pediatric clinical studies.
The plasma exposure was predicted well, being within two-fold
of the observed value in most cases. In spite of the Cmax being
predicted within two-fold of the observed value in all cases, the
absorption of montelukast was not well described in all pediatric
age groups and formulations. Because this model is a physiologic
model, many of the absorption parameters (e.g,, segmental stom-
ach pH, distribution, and abundance of CYP enzymes) used in
the model are not well understood and therefore may introduce
some uncertainty and bias into the model predictions. Addition-
ally, although there are a large number of model parameters in
most physiological models, in most cases, almost all of them are
parameterized based upon prior knowledge and are not fit to
match the observed data. This is in contrast to what is commonly
done when building standard empirical pharmacometrics models
(e.g. population-PK). In the case of the montelukast pediatric
PBPK model described here, no model parameters were fit to the
observed data and the model structure was defined and qualified
using adult data, making the degree of agreement that was
achieved between observed and predicted PK in the different
pediatric age ranges, formulations, and routes of administration
remarkable. Because this PBPK model was defined based upon
many plausible submodels, each being parameterized using infor-
mation regarding what is known mechanistically both about the
drug (montelukast) and the system (anatomy and physiology of
adults and children relevant to drug disposition), the model per-
formance with respect to describing the overall PK profile in a
pediatric population was considered reasonable.*?

The model predicted a change in the fraction of the dose
absorbed in children of different age groups. The fraction of the
dose absorbed is predicted to range from 0.25 in the youngest age
groups (1 month old to 2 years old) to between ~0.7 to 0.9 in chil-
dren greater than two years old and adults depending on the formu-
lation. Such age-dependent changes in fraction of the dose absorbed
are a unique feature of PBPK modeling and arise from age-
dependent changes in gastrointestinal anatomy and physiology (e.g,,
size of the gastrointestinal tract). Additionally, age-dependent
changes in metabolism that may be relevant to DDI or pharmaco-
genetic considerations are another attractive feature of PBPK mod-
eling that may not be considered in standard empirical
pharmacometrics models. The montelukast PBPK model suggests
there are no major age-dependent changes in the fraction of the
hepatic metabolism of CYP2C8 ranging from 0.79 in one to three
month old babies to 0.67 in adults. Similarly, the model predicts
the fraction of the hepatic metabolism CYP3A approximately dou-
bles from birth to adulthood ranging from 0.07 in one to three
month old babies to 0.19 in adults. Using a combination of both
“bottom-up” and “middle-out” approaches described here enabled
the development of a PBPK model of montelukast capable of
describing the concentration time profile in both adults and pedia-
trics with a reasonable degree of accuracy. Even though there is
already considerable knowledge in many areas of pediatric physiol-
ogy, it may be reasonably anticipated that as more research is done
to understand and supplement current knowledge on age-related
physiological variables that impact small molecule pharmacokinetics
(e.g, abundance and ontogeny of drug metabolizing enzymes and
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Figure 6 Observed vs. predicted montelukast plasma concentration-time profiles in pediatric age groups. After a 4 mg oral dose as oral granules to (A)
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transporters, gastrointestinal physiology, and tissue composition,
etc.), the predictive performance and usefulness of pediatric PBPK
models may increase. This case study was useful to understand the
potential utility of PBPK as a predictive tool that could be used in
drug development to guide the design of pediatric clinical studies,
particularly after adult PK-PD information are available in adults.

Challenges and future opportunities for the application of
PBPK models

The strength of PBPK models lies in the ability to integrate con-
current ADME mechanisms with a variety of compound proper-
ties in a physiological context. Being mechanistic rather than
empirical, PBPK models can readily be used to explore “what-if”
scenarios in which iz vive or clinical studies are not feasible or
simulation results can be used to inform better study design and
to extrapolate across species, populations, and different modes of
drug administration. The application of PBPK models for predic-
tion is challenged by the incomplete knowledge of the physiology
and relevant PK mechanisms, poorly understood translation of 7%
vitro data to in vivo for certain processes, and limited in vivo-
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relevant compound data for model verification. The challenges
and limitations of PBPK modeling for different questions and
scenarios are summarized in Table 1. As new information
becomes available, many of these limitations will be overcome.
Specific to clinical pharmacology and drug disposition applica-
tions, major challenges remain in the prediction of transporter
and non-CYP enzyme CLint, in the understanding of ontogeny
of enzymes and transporter proteins, as well as in the changes in
enzyme/transporter abundance in disease populations of interest.
Mass spectrometry-based techniques for quantifying enzymes and
transporters in tissue samples have the potential to advance mod-
eling capabilities by estimating tissue-specific expression in popu-
lations of interest. For example, simultaneous quantification of
11 CYP isoforms in human liver tissue by multiplexed selected
reaction monitoring analysis with liquid chromatography tandem
mass spectrometry was recently demonstrated.” The selected
reaction monitoring technique has been applied to quantify
membrane transporter protein abundance in the blood-brain
barrier, liver, and kidney of the mouse.** Nevertheless, the lack of
agreement on the optimal method of membrane protein
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extraction is a current limitation to the application of this data.
The hepatic intracellular concentrations of transported enzyme
substrates are not well-estimated by available 77 vitro systems that
lack “normal” transporter expression and functionality. Conse-
quently, the development of clearance models for substrates that
are transported by multiple uptake and efflux transporters work-
ing in parallel or in sequence has been limited. In many cases,
additional modeling of the iz vitro data to generate relevant input
parameters for the PBPK model is required.45’46 Several
authors*®* have worked to generate scaling factors to allow in
vitro to in vivo extrapolation of active processes with varying lev-
els of success. The lack of highly selective substrates and inhibi-
tors of non-CYP enzymes and transporters has limited the ability
to test these models with clinical data.

An area of focus and rapid development over recent years is in
PBPK models of absorption. This has been driven by scientists in

4849 . . 50,51
849 in academia,>®’

the industry, and by the commercial soft-
ware suppliers,sz_54 and has resulted in increased confidence in
simulation of absorption across species and populations. Topics
of particular development include the refinement of biorelevant
methods for solubility and dissolution,”’ predicting food effects

in human,’®’

and for application to advanced formulations,
such as lipid suspensions.58 Others have used animal 7z vivo data
to estimate biorelevant solubility and precipitation times."”” In
addition, efforts are ongoing in collaborative projects, such as the
Orbito consortium (http://www.imi.europa.cu/content/orbito)
to enhance understanding and to better predict the absorption of
oral drugs. PBPK models for alternative routes of drug adminis-
tration, such as inhalation, intramuscular, and topical can be val-
uable in integrating target exposure to PD effects, especially when
the target organ is pre-systemic (e.g., lung for inhaled route), in
which case, the use of plasma concentrations as a surrogate to tis-
sue exposure is not valid. A physiologically based pulmonary
model built in MATLAB and integrated with a generic whole-
body PBPK model has been reported.59

The application of whole-body PBPK modeling to monoclonal
antibody PK projections has so far been relatively limited particu-
larly in the pharmaceutical industry. One reason for this may be
that the fundamental ADME processes do not vary dramatically
between monoclonal antibodies with the focus being more on
understanding the properties of the target and how the monoclo-
nal antibody interacts with it. Although published PBPK models
have been shown to fit experimental data,®0-%3 large amounts of
data are required and different groups have not only used differ-
ent physiological parameters but also different representations of
physiology.35 Additionally, as with small molecule PBPK models,
the availability of expression levels of important proteins (e.g.,
FcRn) is limited. Perhaps a more “fit for purpose” application of
PBPK modeling to PKPD prediction of monoclonal antibodies
is the use of “reduced PBPK models,” which incorporate knowl-
edge of the therapeutic target biology and the physiology of the
target site of interest. Examples of such models have been pub-
lished for target sites that include synovial fluid,®* interstitial tis-
sue,” brain,®® and kidney proximal tubule.”” These models,
assuming typical antibody PK properties, can guide affinity matu-
ration by providing a quantitative link between affinity and dos-
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ing, and can be verified with animal data to enable translation
from preclinical species to human populations.

INTERACTION WITH REGULATORY AGENCIES AND
REGULATORY ACCEPTANCE

PBPK modeling and simulation has been recommended by the
FDA,> EMA,> and MHLW’ of Japan to inform DDI study
design and estimate the magnitude of DDIs. The EMA recom-
mends the use of PBPK simulations to guide hepatic impairment
study design with respect to dose and study duration.* Recently,
the FDA’s Pharmaceutical Science and Clinical Pharmacology
Advisory Committee voted in support of extending the use of
PBPK modeling and simulation for pediatric drug develop-
ment.®® Several publications from scientists at regulatory author-
ities are now available covering a breadth of applications of
PBPK modeling and simulations to various aspects of drug devel-
opment including DDIs, organ impairment, and pediatric study
designs.ég_74 Consequently, PBPK modeling and simulation has
seen increased inclusion in both regulatory submissions and
approved drug labels. There were 33 investigational new drugs or
new drug application submissions to the FDA between 2008 and
2012 that contained PBPK modeling approaches, the majority
(61%) of which involved DDI prediction.74 A number of
approved drug labels have mentioned predicted DDIs based on
PBPK modeling (Table 2), with one of the most recent examples
being of Imbruvica (ibrutinib) approved in November of 2013 by
the FDA. In the prescribing information of ibrutinib,”> the
observed interaction with the strong CYP3A inhibitor, ketocona-
zole, and a CYP3A inducer, rifampin in healthy volunteers is
described and drug interactions of ibrutinib with moderate
CYP3A inhibitors and inducers were predicted based on PBPK
simulations. Based on these observed and simulated interactions
with CYP3A perpetrators, ibrutinib dosing recommendations are
made in the presence of CYP3A inhibitors and inducers.

In light of the increasing input from PBPK simulations in the
drug labels, there is a clear need to develop and adopt general
best practice for PBPK reports in support of regulatory submis-
sion and for communication with the regulatory agencies. For
example, it is becoming more common for uncertainty and vari-
ability to be incorporated into PBPK models and, as such, the
output can be expressed in different ways. In most cases, a mea-
sure of central tendency (e.g., arithmetic or geometric mean, and
median, etc.) from the simulated population should be used for
decision-making (e.g., comparing to prespecified cutoffs for the
need to do a study or not) whereas it is currently less clear how
to use the confidence intervals or percentiles in the simulated
population for decision-making purposes because of uncertainties
in these predictions. When including PBPK simulation results in
decision-making, it is very important to consider the predicted
PK changes in the context of the known exposure-response rela-
tionship (efficacy and safety) of the affected drug,

A best practice for the documentation of PBPK modeling and
simulation described the essential components of a PBPK report
to support regulatory submissions.”” For efficient PBPK-based
submissions with maximized value to both regulators and spon-
sor, timely review of submissions should occur by scientists
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Table 2 Examples of drug labeling mentioning PBPK modeling and simulation

Drug name

Labeling reflecting PBPK simulation

URL

Revatio injection (sildenafil)

Revatio injection: predictions based on a PK model suggest
that DDIs with CYP3A inhibitors will be less than those
observed after oral sildenafil administration.

http://www.accessdata.fda.gov/drugsatfda_
docs/label/2012/022473s003lbl.pdf

Cardizem LA (diltiazem)

Computer-based simulations showed that at a daily dose of
480 mg of diltiazem, an 8 to 9-fold mean increase in simva-
statin AUC can be expected. If coadministration of simvasta-
tin with diltiazem is required, limit the daily doses of
simvastatin to 10 mg and diltiazem to 240 mg.

http://www.accessdata.fda.gov/drugsatfda_
docs/label/2010/021392s014Ibl.pdf

Iclusig tablet (ponatinib)

Because the human oxidative metabolism of ponatinib via
the cytochrome P450 system primarily involves CYP3A iso-
zymes, a reduction in ponatinib exposure is likely and was
observed in simulations using a mechanistic model.

http://www.accessdata.fda.gov/drugsatfda_
docs/label/2012/203469Ibl.pdf

Opsumit tablet (macitentan)

Effects of other strong CYP3A4 inhibitors, such as ritonavir
on macitentan, were not studied, but are likely to result in
an increase in macitentan exposure at steady state similar
to that seen with ketoconazole.

http://www.accessdata.fda.gov/drugsatfda_
docs/label/2013/204410s000Ibl.pdf

Imbruvica capsule (ibrutinib)

Coadministration of ibrutinib with CYP3A inhibitors

http://www.accessdata.fda.gov/drugsatfda_
docs/label/2013/205552Ibl.pdf

In a sequential design trial of 18 healthy volunteers, a single
dose of 120 mg of Imbruvica was administered alone on day
1 and a single dose of 40 mg of Imbruvica was administered
on day 7 in combination with 400 mg of ketoconazole (given
daily on days 4-9). Ketoconazole increased ibrutinib dose-
normalized Cmax and AUC 29-fold and 24-fold, respectively.
Simulations using PBPK models suggested that moderate
CYP3A inhibitors (diltiazem and erythromycin) may increase
the AUC of ibrutinib 6 to 9-fold in fasted condition.

Coadministration of ibrutinib with CYP3A inducers

Preliminary PK data from an ongoing dedicated drug interac-
tion trial and simulations using PBPK indicate that rifampin
(a strong CYP3A inducer) can decrease ibrutinib Cmax and
AUC by more than 10-fold. Simulations using PBPK sug-
gested that a moderate CYP3A inducer (efavirenz) may
decrease the AUC of ibrutinib up to 3-fold.

Olysio capsule (simeprevir)

In animals, simeprevir is extensively distributed to gut and
liver (liver:blood ratio of 29:1 in rat) tissues. In vitro data
and PBPK modeling and simulations indicate that hepatic
uptake in humans is mediated by OATP1B1/3.

http://www.accessdata.fda.gov/drugsatfda_
docs/label/2013/205123s001Ibl.pdf

Zykadia capsule (ceritinib)

Coadministration of a single 450 mg Zykadia dose with keto-
conazole (a strong CYP3A inhibitor) 200 mg twice daily for
14 days increased ceritinib AUC (90% ClI) by 2.9-fold (2.5—
3.3) and Cmax (90% ClI) by 22% (7-39%) in 19 healthy sub-
jects. The steady-state AUC of ceritinib at reduced doses
after coadministration with ketoconazole 200 mg twice daily
for 14 days was predicted by simulations to be similar to
the steady-state AUC of ceritinib alone.

http://www.accessdata.fda.gov/drugsatfda_
docs/label/2014/205755s000Ibl.pdf

AUC, area under the curve; Cl, confidence interval; Cmax, maximal plasma concentration; CYP, cytochrome P450; DDI, drug-drug interaction; PBPK, physiologically based
pharmacokinetic; PK, pharmacokinetic.

within the regulatory agencies that have the appropriate skills
and experience to evaluate complicated modeling and simulation-

based submissions.

submission.

In order to seck meaningful and timely input from regulatory

cations at the end of phase 2 meeting so there is time for
improvement and implementation before new drug application

INTERNAL BEST PRACTICES AND EDUCATION

agencies, it is recommended to engage regulators in discussions
on the program level PBPK modeling and simulation strategy as
carly as possible. For example, when applicable, the sponsor
should seck input from regulators about the development and
up-to-date results of the PBPK model and intended future appli-
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Leveraging PBPK simulations to support internal decision-
making and regulatory submissions requires appropriate support-
ive structures within the pharmaceutical company. The
availability of user-friendly PBPK software packages now means
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that PBPK approaches can be used by scientists without the need
for special mathematical/computer programming skills. Although
these tools can be applied to simple tasks such as translation of %
vitro data to iz vivo and to explore uncertainties using parameter
sensitivity analysis, a sound knowledge of the ADME principles
and fundamental physiology underlying the models is essential.
Hence, training to ensure appropriate use of PBPK programs is a
necessary and ongoing commitment. Research and development
management should support their staff in developing PBPK skills
and should request that PBPK simulations are used to answer
and define project-related questions and strategy at key project
decision points. Although provision of widespread access to user-
friendly PBPK tools is to be encouraged, it must also be recog-
nized that such tools are complex and a high level of proficiency
requires some level of specialization. Thus, it is advisable to main-
tain a set of expert users who may be called on to provide advice
and to review models when they are the basis for important deci-
sions and to perform particularly complex analyses.

PBPK software, like other modeling tools, should comply with
internal company requirements for regulatory submissions. To
support effective internal application, appropriate management
of supportive informatics infrastructure is important (e.g., access
to a sufficient number of software licenses and data file storage
on secure internal computer servers). It should be possible to save
project-specific models in a version-controlled form to ensure
that results used for key decisions and in submissions are always
retrievable. An internal company work practice document on the
implementation of PBPK modeling and simulation within the
research and development organization is highly recommended
to establish internal best practices and for internal educational
purposes. The work practice document should clearly outline the
expectations for PBPK modeling and simulation applications
throughout discovery and development along with defining
the roles and responsibilities, training requirements, model eval-
uation/assessment, and how the PBPK tool is accessed, outputs
stored, and retrieved. Because PBPK is an evolving field it is rec-
ommended that the work practice document be updated on a
regular basis and maintained by internal company PBPK
experts. The expectations for PBPK modeling and simulation
applications across discovery and development space in the
work practice document should be based on internal and exter-
nal evaluations of the applications and reflect the current regula-
tory thinking. This guidance document could be a part of the
internal company training curriculum for appropriate research
and development staff and management. This way the docu-
ment can serve a dual purpose of not only establishing internal
best practices but also serve the educational purposes for the
research and development staff and management.

CONCLUSIONS

Current industry experiences highlight the increasing value of
PBPK modeling with a wealth of PBPK modeling applications
ranging from discovery to FIH studies to drug approval
Although many PBPK models inform preclinical or clinical study
design for “in-house” decision-making, some PBPK models have

directly aided drug approval and labeling. PBPK model confi-
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dence and acceptance is dependent on drug properties and model
purpose. For example, certain categories of PBPK DDI prediction
are made with high confidence because of the maturity of the
underlying science, and, consequently, are frequently used. Other
applications, such as predictions for special populations, organ
impairment, or pediatrics are characterized by low to moderate
confidence. Some fields continue to evolve, such as PBPK integra-
tion with PD, but the experiences are still limited. As the oppor-
tunities to include PBPK modeling in regulatory submissions
grow, the focus on appropriate model verification and commu-
nity education will increase. The interwoven challenges of model
verification and enhancing expertise will require integration from
all sectors impacted by PBPK modeling. Collaborations among
preclinical scientists, formulators, pharmacometricians, clinical
pharmacologists, clinicians, and statisticians are essential for
impactful and successful application as well as implementation of
PBPK modeling and simulation in drug discovery and develop-
ment. Although it is not possible to give a detailed PBPK guid-
ance for all applications here, a few principals should be
considered when submitting models to health authorities, some
of which have been described by Agoram.42 Model objectives and
purpose should be clearly described along with limitations. In
addition, model variability should be simulated and parameter
sensitivity be performed for key input parameters. It is important
to ensure that the conclusions drawn from PBPK modeling are
consistent with all other types of modeling that are conducted in
drug development. Model verification remains critical, as it is the
only way to convincingly or objectively test and generate new
hypotheses, but this must be approached on a case by case basis.
In conclusion, successful application and implementation of
PBPK modeling and simulation in drug development can be
accomplished by following some basic modeling principles and
consequently drive “in-house” decisions, regulatory submission,
and ultimately benefiting patients.

Additional supporting information may be found in the online version of
this article.
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